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Abstract

Proteins are often referred as working molecule of a cell, performing many

structural, functional and regulatory processes. Revealing the function of proteins

still remains a challenging problem. Advancement in genomics sequence projects

produces large protein sequence repository, but due to technical difficulty and cost

related to structure determination, the number of identified protein structure is far

behind. Novel structures identification are particularly important for a number of

reasons: they generate models of similar proteins for comparison; identify evolution-

ary relationships; further contribute to our understanding of protein function and

mechanism; and allow for the fold of other family members to be inferred. Consider-

ing the evolutionary mechanisms responsible for the generation of new structures in

proteins, it has been speculated that there may be a limited number of unique protein

folds as few as ten thousand families. Currently, the Protein Data Bank consists of

nearly 113,000 protein structures, but less than 1,500 families are represented, and

almost no new fold families have been reported since 2008. Ideally, solved protein

structures for new protein families would be used as templates for in silico structure

prediction methods, and the results of both solved and predicted structures would

in turn be used to infer function. However, such an approach requires new, efficient

and cost-effective computational methods for target selection and structure determi-

nation. Traditional characterization of a protein structure by NMR spectroscopy is

expensive and time consuming regardless of the structural novelty of the target pro-

tein. In an effort to expand the applicability of NMR spectroscopy, the community

is continually focused on the development of new and economical approaches that
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enable the study of more challenging, or structurally novel proteins. While many ad-

vances have been made in this regard, very little attention has been made on reducing

the cost of structural characterization of routine proteins.

Probability Density Profile Analysis (PDPA) has been previously introduced to

directly addresses the economies of structure determination of routine proteins and

subsequently, identification of novel structures from minimal sets of NMR data. The

latest version of PDPA (2D-PDPA) has been successful in identifying the structural

homologue of an unknown protein within a library of 1000 decoy structures. In

order to further expand the selectivity and sensitivity of PDPA, incorporation of

additional data is necessary. However, current PDPA approach is limited by its

computational requirements, and its expansion to include additional data will render

it computationally infeasible. Here we propose a new method and developments

that eliminate PDPA’s computational limitations and allow inclusion of Residual

Dipolar Coupling (RDC) data from multiple vector types in multiple alignment media.

Additionally nD-PDPA will be used to refine an unknown protein to obtain closer

structure to the native in terms of bb-rmsd.
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Chapter 1

Proteins: The building block of life

1.1 Fundamentals of Protein Structures

Almost all biological processes involve the interaction of one or more proteins. These

large molecules exhibit a remarkable versatility that allow them to perform a myriad

of crucial activities and functions. Structure of proteins is not separate from their

functionality. It has been shown that there is a relation between the protein struc-

ture and its functionality. Many reactions in biological systems are conducted by

proteins, producing a sophisticated chemical reaction that an organism needs for its

life. Moreover, proteins have the responsibility of transporting chemicals and regu-

lating functions in organisms. Proteins are polymers constructed from a set of 20

amino acids. Polymers of amino acids are called polypeptide.A protein may consist

of one or more polypeptides chain that are folded into a specific three-dimensional

shape [50] [71].

1.1.1 The Primary Structure of Proteins: Sequence

of Amino Acids

A protein is a linear combination of amino acids and this combination ultimately

defines its three-dimensional shape. The sequence of amino acids is often called

the primary structure. Amino acids are organic molecules consisting of both car-

boxyl(COOH) and amino groups(NH2). Figure 1.1 illustrates the general chemical
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Figure 1.1: The Structure of a prototypical amino acid. The chemical groups bound
to the central α−carbon, are highlighted in the background. The R-group represents
any of the possible 20 amino acid side chains.

formula of an amino acid. At the center of an amino acid, there is a carbon atom

called α− carbon. Surrounding the α− carbon are an amine group, carboxyl group,

hydrogen atom and a variable group symbolized by the letter R. The R group is

called the side chain and is different for every amino acid. There are nearly 20 amino

acids that can be incorporated into a protein sequence. The resulting protein can

use any number of 20 amino acids, in any order. Physical and chemical properties of

the side chain determine the characteristic of an amino acid such as hydrophobicity,

hydrophilicity, and polarity (Figure 1.2).

1.1.2 The Peptide Bond

When two amino acids are positioned in such a way that the carboxyl group of the

first amino acid links with the amine group of the other, the result is a dehydration

reaction where a water molecule is formed and removed from the reaction and the

two amino acids come together to form a covalent bond called a peptide bond (Figure

1.3).A polypeptide is synthesized by linear formation of peptide bonds between two

or more amino acids. An amino acid within a polypeptide chain may also be referred
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Figure 1.2: The twenty amino acids used in proteins. Each amino acid is labeled by
its full name followed by three letters and one letter (in the red circle) abbreviations.
Amino acids are grouped into negative or positive charges, hydrophobic or hydrophilic
side chains [71].
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Figure 1.3: Peptide bond formation between successive amino acids. Amine group
ends on the second (R2) amino acid is added to the carboxyl end of the first (R1)
amino acids. The amino acid terminus of R1 amino acid remains unchanged, end of
polypeptide grows in the N to C direction. The repeating N − C(R) − C subunit
remaining after the dehydration is an amino acid residue [71].

Figure 1.4: The backbone atoms of two joined amino acids.The green spheres denote
the carbon atoms and the blue spheres are nitrogen atoms.

to as a residue and atoms on the peptide bonds along with the α− carbon atoms to

which R-group are attached, are referred to as the peptide backbone (Figure 1.4).
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Figure 1.5: The planar characteristic of the peptide bond, and the rotation of the
peptide backbone about the Cα atom. The two planar peptide bonds about the
central α − carbon, shown here as a ball-and-stick model. Rotation is only possible
around φ and ψ angles.

1.1.3 Ramachandran plot

The peptide bonds have important effects on the three-dimensional structure of

a protein. These bonds are labeled as φ (Phi) and ψ (Psi) angles (Figure 1.5). The

peptide bonds give a polypeptide limited freedom to rotate only about the α−carbon

bond. The limitation of the rotation of the φ(N −Cα) and ψ (Cα−C) angles are due

to steric hindrance between the side chain of the residue and the peptide backbone. A

Ramachandran Plot (a plot of φ vs ψ angles) maps the entire allowed and disallowed

conformational space of an amino acid. These restrictions were developed by G.N

Ramachandran in the late 1960s based on studies of sterically allowed φ and ψ torsion

angles (Figure 1.6). An amino acid with the simple structure in the side chain (e.g

Glycine with a single hydrogen(Figure 1.2)) demonstrates less steric hindrance of φ

and ψ which leads to expanding the conformational space. On the other hand, Proline

(with a cyclic R group (Figure 1.2)) demonstrates less freedom of steric hindrance

due to its cyclic structure (Figure 1.7).
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Figure 1.6: A schematic representation of a ramachandran plot (a plot of φ and ψ
angles). The closed regions denotes valid regions for φ and ψ angles. The red dots
are φ and ψ angles extracted from database of 50 structures. Data was taken from
Richardson Lab (http://kinemage.biochem.duke.edu)

1.1.4 The secondary structure of a proteins: Local

Three dimensional structures

The stability that is introduced by hydrogen bonds leads to locally stabilized con-

formations that are known as Secondary Structures. The secondary structure consists

of polypeptide chains that repeatedly coils or folds into a pattern that contributes

to a protein’s overall conformation. The two types of secondary structure that are

dominant in protein conformation are α-helix and β-sheets.

1.1.5 α-Helices

In the α-helix conformation, the H atom of residue i forms a hydrogen bond to the

carbonyl O of residue i + 4 (Figure 1.8). Another symmetrical relationship between
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Figure 1.7: Comparison of Ramachandran plots for Proline and Glycine amino acids.
The smaller side-chain of Glycine demonstrates the larger valid region φ and ψ in
contrast to Proline and Pre-Proline.Generally the larger side-chain restricts backbone
movements.

residues in an α− helix is the geometrical relationship. In an α− helix any residue

i + 1 rotates approximately 100◦ rotation relative to the residue i around the helix

axis. α−helices in protein, almost without exception, are right handed. If the chain

is compressed more tightly than in an α − helix, an alternative hydrogen-bonded

structure can form, called the 310 helix, where N −H of residue i is hydrogen bonded

to the carbonyl O of residue i+3. If the chain winds up less tightly than the α−helix,

it can form a π− helices, in which the N −H of residue i is hydrogen bonded to the

carbonyl O of residue i+5.

1.1.6 β-sheets

A β − sheet is formed from two separate strands, which may arise from regions

distant in the sequence. This arrangement produces a sheet that is pleated with the
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Figure 1.8: (a) Atomic formation of an α− helix, the red dashed lines represent the
hydrogen bonds that form the helix shape.(b) The cartoon view of the same helix.

residue side chains alternating position on the opposite sides of the sheet (Figure

1.9). The two possible arrangements for β − sheets are parallel and anti-parallel. In

parallel sheets, the strands are arranged in the same direction with respect to the

amine terminal (N) and carboxyl terminal (C) ends. However, in the anti-parallel

arrangement, the strands alternate the amino acid and carboxyl terminal ends in such

a way that a given strand interacts with a strand in the opposite direction.

1.1.7 The tertiary structure of proteins: Global three-

dimensional structure.

Tertiary structure of a protein is defined as the global three-dimensional structure

of its polypeptide chain (Figure 1.10). Tertiary structure of a protein is the result

of interaction between the side chains (R group) of the various amino acids. Con-

sequently, the side chains in the tertiary structures of a protein play an important

role in creating the final structure. In contrast, the backbone interaction is primary
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Figure 1.9: (a) Atomic formation of a β − sheet, red dashed lines represent the
hydrogen bonds that form β − sheet.(b) The cartoon view of the same β − sheet.

Figure 1.10: Tertiary representation of the protein 1G1B(164).

responsible for the generation of the secondary structure (α− helix and β − sheet).

1.1.8 Protein folding

The process of transferring the linear polypeptide chain to a three-dimensional

structure is referred as protein folding. Protein folding is a complex process that is

not completely understood yet. The major challenge is, how are the physiochemical
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properties (such as hydrgenbonds, van der Waals interactions, backbone torsion an-

gles preferences and etc) of linear set of amino acids translate to the three-dimensional

native conformation of a protein and what forces drive amino acids chain into a folded

structure [32]. The physical forces are described by forcefields. The forcefields utilize

internal potential energy of proteins for computer simulations. Although computer

aided simulation methods such as MD (Molecular Dynamic) Simulation are successful

to address the folding problem, but so far, such a modeling succeeds on small and

simple protein folds [67]. More complex protein structures require more computa-

tional power and speed, which is still out of reach of our computational capabilities.

Most proteins probably go through many intermediate states to reach to the final

stable folded stage; and looking at the mature conformation does not reveal the stage

of the folding required to achieve the final conformation.

1.1.9 The Quaternary structure of proteins

Quaternary structure of a protein is the aggregation of two or more folded polypep-

tides into its functional macro-molecule. These proteins are also referred as multi-

subunits. The subunits may be identical (homomeric) proteins or they can be con-

stituted of different proteins subunits (hetromeric)(Figure 1.11).

1.2 Classification of Protein Structures

Protein structures can be categorized based on the similarity in sequence, topology

or even in observable structural details. Protein sequence and topology similarity

are two main features that are utilized in protein classification. As the number of

characterized protein structures grew, the classification of these proteins became more

difficult [64] [29] [30]. A protein fold family is a group of proteins that share common

evolutionary origin, reflected by their related functions and similarities in sequence
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Figure 1.11: Homomeric quaternary representation of the protein 1NWW(149).

or structure. When a novel protein is identified, its functional properties can be

potentially predicted based on the group to which it belongs. It is worthy to note

that the classification of a novel protein solely based on the sequence may not always

lead to a correct classification if three-dimensional conformation of the structure is

not considered [50]. In the classification of protein, it is also important to study the

biological evolutionary of the structure. The terms super-family (describing a large

group of distantly related proteins) and sub-family (describing a small group of closely

related proteins) are sometimes used in this context.

1.2.1 Comparison of proteins using sequences and struc-

tures

A common method to identify the similarities of proteins is comparing protein

sequences. If the sequence of amino acids of two proteins aligns, then either the

identical residues can be counted or a more subtle measure based on the index of

11
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Figure 1.12: Superposition of human and the yeast FK506-binding proteins
2FKE(107)(red) and 1YAT(113)(green) the backbone RMSD score for the backbone
atoms after alignment is 0.887 Å. These proteins have very similar structures.

similarity between amino acids can be used. The similarity between two sequences is

then the sum of the value of the indices of similarity for each pair of aligned amino

acids plus a correction to address for insertion and deletion of amino acids [51] [33].

Given the structures of two proteins, it is possible to superimpose the three-

dimensional structures using computer tools to observe the similarities and differences

of the structures. A commonly used mathematical measure of the difference between

two structures is rmsd (root-mean-square deviation) in atomic position of the back

bone atoms after optimal super position (Figure 1.12).

1.2.2 Classification of protein topologies

Classification based on the topology was first proposed by M. Levitt and C.

Chothia [63]. This classification is based on the secondary and tertiary structures

of domains. A domain is a distinct functional and structural unit of a protein. Usu-
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ally domains are responsible for a particular function or interaction, contributing

to the overall role of a protein. Classification of proteins based on the similarity

of domain creates a very broad range of groups, protein structures sort themselves

into distinct categories with noticeable different folding patterns. Within the sets of

classification using topology there are families that share enough features to suggest

evolutionary relationship. There are numerous databases available for classification

of proteins. Protein Data Bank (PDB) [15] [14] contains more than 113672 pro-

tein structures and their toplogy information. CATH(Class, Architecture, Topology,

Homology) [64] [29] [30] is a hierarchical domain classification of protein structures

in the Protein Data Bank. Protein structures are classified using a combination of

automated and manual procedures.

13
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Chapter 2

Protein Structure Determination

2.1 Introduction

Despite the recent advances in various Structural Genomics Projects, a large gap

remains between the number of sequenced and structurally characterized proteins.

The reasons contribute to this inefficiency include technical difficulties, labor, and

the cost related to structure characterization by experimental methods such as NMR

spectroscopy. As of June 2014, UniPortKB contains more than 69 million protein

sequences were deposited in the UniProtKB database [9](http://uniport.org). How-

ever, the number of protein structures in the Protein Data Bank (PDB) [14] [15]

(http://www.rcsb.org) is only about 113,000; less than 1% of the protein sequences.

Protein structure determination is essential to understand its function and inter-

action, for important applications such as drug discovery and design. In principle,

protein structure prediction methods can be grouped into two categories, experimen-

tal methods and computational methods. In the following two sections, the two major

methods of determining protein structures are discussed.

2.2 Experimental Methods

X-ray crystallography and NMR spectroscopy are two methods of choice to de-

termine protein structures experimentally. Based on the report from Protein Data

Bank(PDB) (http://www.rcsb.org) [14] [15], about 88.6 percent of protein structures

14
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Figure 2.1: Myoglobin (PDBID:1MBN(153)). This protein is very common in muscle
cells, and its function is to store Oxygen. The reserved Oxygen is used when muscle
tissues are hard at work. It is characterized using X-ray crystallography in 1958.

.

are identified by X-ray crystallography and 10.3 percent by NMR spectroscopy and

the rest of proteins are identified by other techniques. One reason for this dispro-

portional contribution is due to the recent introduction of NMR spectroscopy as a

routine method for structure determination.

2.2.1 X-ray Crystallography

Structural biology was born in 1958 with the utilization of X-ray technique to

characterize the atomic structure of Myoglobin (PDBID:1MBN(153))(Figure 2.1) by

John Kendrew [45]. By the early of 1970’s, there were many proteins, characterized

using the same technique and until now, X-ray Crystallography remained one of the

major methods to study protein structures. X-ray Crystallography utilizes X-ray

diffraction for a single protein crystal to determine the three-dimensional shape and

structure of the molecules(Figure 2.2). The crystalline atoms cause a beam of X-ray

to diffract in many directions. By measuring the angles and intensities of diffracted

beams, a three-dimensional picture of the electrons density within the crystal can be

produced. To crystallize a protein, the purified sample undergoes slow precipitation

from an aqueous solution. As a result, individual protein molecules concentrated
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Figure 2.2: The illustration of diffraction of incoming beams when colliding with
crystal points.( [93])

.

and aligned themselves in a repeating series of "unit cells" by adopting consistent

orientation [75]. X-ray Crystallography has several major drawbacks. The process of

protein crystallization can be very time consuming since selected sample conditions

and environment(such as varying PH, salt concentration, salt type, buffer type) need

to be carefully explored for successful crystallization. Crystallization medium may

introduce packing forces on the protein, which may alter the structure and internal

dynamics of the protein. Additionally the X-ray diffraction phenomena known as

radio damage has an effect on the protein structure. To reduce the radio damage, the

sample is usually put into a very low-temperature environment. Under this condition,

the internal dynamics of the molecule is suppressed. Obtaining results from X-ray

Crystallography are relatively fast and require utilization of computer software.

2.2.2 Nuclear Magnetic Resonance

The first de-novo NMR (Nuclear Magnetic Resonance) [92] structure determination

was completed in 1984 by Timothy F. Havel and Michael P. Williamson [54](Figure

2.3). Within five years, over 2,000 NMR structures have been deposited into newly

established Protein Data Bank (PDB) [96]. NMR has a variety of applications in
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Figure 2.3: Protein BUS2(57) is known as the first de-novo protein characterized by
NMR spectroscopy

.

physics, chemistry and biology. Specifically in biology, NMR spectroscopy is utilized

to determine the protein structure by analyzing the magnetic properties of different

nuclei under electric-magnetic stimuli. NMR provides structural information through

measuring geometric restriction of a given structure. These restrictions are the dis-

tance between the different pair of atoms (NOE, Nuclear Overhauser Effect), the

orientation of inter-nuclear vector (RDC, Residual Dipolar Coupling) or other relax-

ation properties of nuclei. The NOE is the transfer of nuclear spin polarization from

one nuclear spin population to another via cross-relaxation. It is a common phe-

nomenon observed by NMR spectroscopy. NOE provides information related to the

inter-atomic distances within a short range. The distance information can be used to

determine molecular structure based on the distance constraint. Figure 2.4 demon-

strates a sample 2D-NOESY spectrum of the protein Ubiquitin(PDBID:1UBQ(76)).

In this spectrum the intense regions refer to the inter-atomic distance between pair

of atoms in particular frequencies. The magnitude of the NOE peaks exhibits an r−6

dependency with respect to the inter-atomic distance r. Therefore, NOE constraints

are considered to provide short range distance information limited to no more than 5

Å. Although the NOE constraints are relatively easy to obtain. However, NOE based
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Figure 2.4: NOESY spectrum contour map of ubiquitin.1

structure determination is undermined by some significant limitations. For instance,

molecular dynamics is hardly reflected by the inter-atomic distance within very short

range. Therefore, NOE naturally is insensitive to internal motion. Furthermore, as

the protein size grows the identification of NOEs between partners become a difficult

task. Finally, the assignment process is time-consuming and error prone. Without

assignment, NOE data provide the distance relation between chemical groups rather

than residues. Residual Dipolar Coupling is the primary data source in this research.

Next chapter provides more detail information about RDC and its application in this

study.To fully understand the functionality of NMR experiments, detailed knowledge

of subjects from quantum physics to chemistry and mathematics would be required.

To avoid complexity of the subject and to maintain focus of our objective in this

manuscript, NMR is treated as a black-box, providing information and data that is

needed for proposed computational methods. A full exposition of the topic can be

found in [25]. The main advantage of using NMR spectroscopy is the possibility of
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the study of the protein in its native environment. Study of a protein in its actual

physiological conditions will provide better functional information while preserving

the internal motions. The disadvantage of NMR spectroscopy is isotopic labeling of

certain nuclei(such as 15N , 13C) and relatively long data acquisition periods.

2.3 Computational Methods

The core task of the computational methods for structure characterization is the

prediction of protein fold (three-dimensional conformation) from a sequence of amino

acids. Computational methods that are used routinely fall into three categories:

Template-Based Modeling, Homology-Based Modeling and De novo or Ab-initio pro-

tein modeling.

2.3.1 Template-Based Modeling

If proteins of a similar structure are identified from the PDB library, the target

model can be constructed by copying the framework of the solved proteins (tem-

plates). The procedure is called “Template Based Modelling (TBM) ” [37] [95]. Al-

though high-resolution models often can be generated by TBM, the procedure relies

on completion of the protein database. Protein Data Bank contains 113,672 proteins.

Several methods are developed to categorize proteins based on structural features

and three-dimensional shapes often called folds or fold families[see section 1.2] [64].

Considering the intrinsic physical constraints of a sequence and the evolutionary

mechanism responsible to generate a new protein structure, current estimates of the

number of folds range from 1,000 to 10,000 depending on the models and approxima-

tion applied [41] [49]. Thus far based on CATH [29] [30] or SCOP [66] classifications

the growth of unique fold per year indicates no significant change from 2008 to 2014

(Figure 2.5(a)). On the other hand, the yearly growth of novel protein structures
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(a) (b)

Figure 2.5: Number of protein structures in PDB (a) unique folds reported by SCOP
and (b) cumulative since 1992

shows a healthy trend of growth each year (Figure 2.5(b)). The main contributing

factor to this inefficiency is the lack of any accurate method of target selection that

is: a structure will be selected for analysis may not yield a novel structure. The

current method for selection a structure is based on sequence homology analysis.

Although homology method covers the available protein sequence space, it may not

be an optimal method to cover protein three-dimensional structural space. Protein

Data Bank contains protein structures with similar structures but different sequences.

Thus, developing an efficient computer-based algorithm to predict three-dimensional

structures from sequences is probably the only avenue to solve the problems.

2.3.2 Homology-Based Modeling

Homology modeling is based on the identification of one or more protein structures

that are likely to resemble the structure of the query sequence. Sequencing method

is used to align the query sequence against the accumulation of a known protein

structure. Structural homologous can be identified using software such as BLAST

[24] [19] or PSI-BLAST [6]. Once a protein with sufficient sequence identity has been

found, it can be used as a template to predict the native structure or function of a
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target protein.

2.3.3 Ab-initio Modeling

If protein templates are not available, the three-dimensional models are built from

scratch. This procedure is known as ab initio modeling [52] or de-novo modeling [21].

Typically, ab-initio modeling conducts a conformational search under the guidance

of a designed energy function. This procedure usually generates a number of possible

conformations (structure decoys), and final models are selected from them. There-

fore, a successful ab-initio modeling depends on three factors: (1) an accurate energy

function with which the native structure of a protein corresponds to the most thermo-

dynamically stable state, compared to all possible decoy structures; (2) an efficient

search method that can quickly identify the low-energy states through conforma-

tional search; (3) selection of native-like models from a pool of decoy structures. The

CASP [61] meeting has shown that, over the past few years, the most rapid devel-

opment has been in the ability of ab-initio protein folding techniques to generate a

reasonable structure for an arbitrary sequence. This has mostly been done using some

form of statistical potential since our understanding of the physics of protein folding

has not progressed anywhere near as much.While it is clear that the folding of proteins

from first principles remains intractable and therefore outside of out computational

abilities, the alternative approach of classification method is required.
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2.4 Comparison of Experimental and Compu-

tational Methods - Summary of Current

Method Limitations

X-ray crystallography and NMR spectroscopy methods provide very reliable and

relatively accurate structural information. Generally the experimental methods suffer

from three major setbacks: Cost, required analysis time and preparation of biological

samples. The cost of producing a protein is generally near $1000,000 which on average,

takes about one year of combined data acquisition and analysis. On the other hand,

protein sample preparation for laboratory experimentation, in practice, becomes a

major limitations factor. Most of the time protein extraction and purification is a

difficult process. The conformation of proteins is often not preserved in chemicals

environments other than their native solutions.

In summary, the production of a protein structure based on the conventional meth-

ods is slow and expensive. Computational methods produce a protein structure in a

very cost efficient, and relatively fast and bypass the need for the physical existence of

a biological sample. Although many advances have been made in the computational

field, often the structures produced by this method contain considerable structural

errors. Combining both experimental and computational methods can be a solution

for aforementioned problems. Minimum data collected from NMR spectroscopy are

often rapid and inexpensive. Combining these data with computational methods

can produce more reliable structures. Such a hybrid method that combines minimal

experimental data with computational methods is the topic of this study.
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Chapter 3

Residual Dipolar Coupling - RDC

Residual Dipolar Coupling had been observed as early as 1963 [72] in a nematic

crystal environment. In mid-1990s, a number of research reignited the usage of the

RDC in the characterization of biomolecules [80] [78]. The usage of RDC in the

analysis of the biological structures has expanded rapidly recently, ranging from au-

tomated backbone resonance assignment [90], structure determination [86], protein

folding to ligand protein and protein-protein interactions [5] [89].

3.1 RDC Principles

The physical basis of RDC is the dipole-dipole interaction between two nuclear

spins(Figure 3.1). In the presence of an external magnetic field the RDC between

two spin 1
2 nuclei i and j is given by Equation 3.1:

dij = −µ0γiγjh

8π3 〈3cos
2θ(t)− 1

2r(t)3
ij

〉 (3.1)

where γi , γj are magnetogyric ratio of given nuclei, h is Plank’s constant, r is the

distance of two nuclei, and θ is the angle between internuclear vector and the external

magnet field B0. The angle brackets denotes the time average dependence of the RDC

observable.
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Figure 3.1: The dipolar coupling between two nuclei N and H that depends on the
distance r and average orientation θ.

3.2 Alignment Media

The successful acquisition of RDC data depends on using a proper alignment

media. To obtain RDC signal, the partial alignment of the molecule in the solution

is required [69]. Alignment media help to restrict free tumbling protein. Therefore,

the overall protein ensemble shows detectable net RDC signals. Alignment media are

utilized routinely such as bicelles, bacteriophage and polyacrylamide gels [68]. The

identification of suitable media for a protein is not necessarily trivial. The level of

alignment media is an important factor. Alignment should be sufficient to produce

measurable RDC, but not so large to introduce the spectral complexity [68].

3.3 RDC Assignment

The assignment of a set of RDC is to find the relationship between RDC data and

corresponding protein residue. RDC data from the NMR device is unassigned. That

means RDC data are not corresponding to the primary sequence of the structure.

Assignment of RDC data can be difficult and time-consuming, depend on the size

and complications of the protein.

24



www.manaraa.com

Figure 3.2: Sample powder pattern for the Residual Dipolar Coupling.

3.4 Powder Pattern

The distribution of the RDC data for the infinite number of isotropically dis-

tributed vectors in three-dimensional space will generate a Powder Pattern (Figure

3.2) [87]. A Powder Pattern is described by three parameters, Sxx, Syy and Szz where

Szz = −Sxx − Syy which are called Principle Order Parameters (POP). The three

parameters demonstrate the alignment strength of the protein along the x, y and z

axes. Two conditions are assumed to form a Powder Pattern from the distribution

of RDC data. The first one is the number of internuclear vectors should be large

enough, and the second is the distribution of the internuclear vectors data should be

uniform in three-dimensional space. The distribution of an actual structure is highly

non- random, depending on the shape of the protein (Figure 3.3). Therefore, the dis-

tribution of the RDC data contains structural information about the secondary and

tertiary structure of the protein which is the fundamental ground for this research.
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Figure 3.3: Distribution of simulated RDCs for protein 1A1Z(91) (in red-dotted
color), with hypothetical order tensors. The horizontal axis represents value of RDC
data and the vertical axis represents the likelihood of observing a given value of the
RDC.

3.5 Order Tensor and Its Application in RDC

Analysis

The averaging described in Equation 3.1 contains information about the internu-

clear with respect to the magnetic field. In the case of a macromolecule, the average

can be described as the average orientation of the macromolecule with respect to the

magnetic field and the orientation of the internuclear vector relative to the molecular

frame. Let vector ~B(t) = B.[bx(t)by(t)bz(t)] be the magnetic field such thatB = | ~B(t)|

at time t, and let ~Rij(t) = rij(t).[rxryrz] such that rij = |~Rij(t)|. Substituting this

time-dependent orientational information into Equation 3.1 yields Equations 3.2 to

3.9:

RDCij = 〈 −µ0γiγjh

((2π)rij(t))3 .(
3([bx(t)by(t)bz(t)].[rxryrz])2 − 1

2 )〉 (3.2)

RDCij = 〈 −µ0γiγjh

(2π)3〈r3
ij(t)〉

.(3〈([bx(t)by(t)bz(t)].[rxryrz])2〉 − 1
2 )〉 (3.3)
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RDCij = −µ0γiγjh

(2π)3〈r3
ij(t)〉

×(3
2 .[rxryrz].


〈bx2(t)〉 〈bx(t)by(t)〉 〈bx(t)bz(t)〉

〈bx(t)by(t)〉 〈by2(t)〉 〈by(t)bz(t)〉

〈bx(t)bz(t)〉 〈by(t)bz(t)〉 〈bz2(t)〉

 .

rx

ry

rz

−
1
2)

(3.4)

Dmax = −µ0γiγjh

(2π)2 (3.5)

rijeff = 3
√
r3
ij(t) (3.6)

v = [rxryrz] (3.7)

S = 3
2


〈bx2(t)〉 〈bx(t)by(t)〉 〈bx(t)bz(t)〉

〈bx(t)by(t)〉 〈by2(t)〉 〈by(t)bz(t)〉

〈bx(t)bz(t)〉 〈by(t)bz(t)〉 〈bz2(t)〉

−
1
2I (3.8)

where I is the identity matrix.

RDCij = Dmax

(rijeff )3
.vSvT (3.9)

As Equation 3.6 shows rijeff is not the same as 〈r3
ij(t)〉. This is because of the vibration

of the particles that creates non-constant bonds length. In this manuscript we assume

rijeff = 〈rij(t)〉. In Equation 3.8, S is referred to as the Saupe Order Tensor Matrix,

which in this manuscript will often be referred to as simply the Order Tensor Matrix

(OTM). Equation 3.9 can be re-written as Equation 3.10

RDCij = ( Dmax

(rijeff )3
)(Sxxx2 + 2Sxyxy + 2Sxzxz + Syyy

2 + 2Syzyz + Szzz
2) (3.10)

where

S =


Sxx Sxy Sxz

sxy syy syz

sxy syz szz

 (3.11)

v = [x y z] (3.12)

|v| = 1 (3.13)
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3.6 Order Tensor Matrix Decomposition

Spectral Theorem of Linear Algebra states that every symmetric matrix has the

factorization of A = QΛQT with real eigenvalues in Λ and orthonormal eigenvector

in Q [40]. Therefore, since every order tensor matrix is symmetric, there exists

a decomposition of S = RS ′RT for every order tensor matrix S such that S’ is a

diagonal matrix of the eigenvalues of S and R is rotation matrix whose columns

are the eigenvectors of S. The rotation preserves the traceless property of a matrix,

therefore S ′ is also Saupe Order Tensor Matrix (OTM). Equation 3.9 can be re-written

as below:

RDCi = (Dmax

reff 3 ).viRS ′RTvi
T (3.14)

RDCi = (Dmax

reff 3 ).(viR)S ′(viR)T (3.15)

Equation 3.15 explains that all vectors in the molecule can be rotate by R rotation

matrix. Equation 3.15 can be re-written as below:

RDCi = (Dmax

reff 3 ).((x′i)
2
Sxx

2 + (y′i)
2
Syy

2 + (z′i)
2
Szz

2) (3.16)

where

viR = v′i = [x′iy′iz′i] (3.17)

|vi| = 1 (3.18)

We can assume R as an anchor frame that has the application of rotating of two

domain of molecules with respect to each other from Residual Dipolar Coupling we

used this property to generate RDC computationally two simulate medium alignments

[84]. If |S ′xx| , |S ′yy| and |S ′zz| be the diagonal elements of S ′ , the relation between

these elements are as follows:

|S ′xx| ≤ |S ′yy| ≤ |S ′zz| (3.19)
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Equation 3.17 states v′i is in the Principal Alignment Frame (PAF) and the diagonal

elements of matrix S ′ are known as Principal Order Parameters (POP) of S. Con-

sequently the maximum and minimum of RDC value can be obtained by following

equations:

RDCmax = Dmax

rref 3 S
′
zz v′ = [0 0 ± 1] (3.20)

RDCmin = Dmax

rref 3 S
′
yy v′ = [0 ± 1 0] (3.21)

Rotation matrix R can further be decomposed into three rotational matrix around z,

y and z axes. Equations 3.22 to 3.25 demonstrate these rotational matrices:

R(α, β, γ) = Rz(α).Ry(β).Rz(γ) (3.22)

Ry(θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (3.23)

Rz(θ) =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.24)

R(α, β, γ) =


cosαcosβcosγ − sinαsinγ −cosαcosβcosγ − sinαcosγ cosαcosβ

sinαcosβcosγ + cosαsinγ −sinαcosβsinγ + cosαcosγ sinαsinβ

−sinβcosγ sinβsinγ cosβ


(3.25)

3.7 Order Tensor Estimation

The core of the RDC analysis is the accurate estimation of order tensors, which

provide valuable information about the alignment of the molecule. This information

later can be used to study the structure and dynamics of a existing protein structure.
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Order tensor can be estimated based on the assignment of resonance. This method

however is costly and time-consuming and existence of high-resolution structure is

required [84]. Other researches have developed methods to eliminate the need for

assignment of resonance. These methods mainly use an unassigned collection of

RDC sets from single medium and comparing it with an infinite number of uniformly

distributed vectors (powder pattern) [91].In general principal order tensor generated

by this method are accurate, furthermore it is mathematically impossible to obtain

orientational information of the structure using this method, due to large searching

space. Alternatively, a new method has been developed that combines the methods

of estimating principle order parameter of order tensor from unassigned RDC data

with a known structure to estimate the orientational components of the order tensor

as well [12] [85].However the order tensor estimation may not be accurate due to the

assumption of the adequate sampling of the RDC space.
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Chapter 4

Protein Structure Analysis Using Unassigned

RDC Data

4.1 Introduction

Residual Dipolar Coupling (RDC), provides useful orientational information for

the inter-nuclear vectors within a molecule [80]. RDC data have been shown to be

a very rich source of information about the structure and dynamics of proteins that

can be acquired quickly on samples with more limited isotopic labeling. RDCs have

been used in studies of carbohydrates [11] [1] [76], nucleic acids [79] [88] [2] [5] and

proteins [10] [7] [31] [70] [83]. The use of RDCs as the main source of structural

information has led to a significant reduction in data collection and analysis, while

providing the possibility of resonance assignment [74] [44] [56] [48], and identifica-

tion of dynamical regions [16] [20] [23]. Any distance-based constraints can be used

only if they have been assigned(see Section 3.3). A given distance is called to be

assigned, if the two atoms participating in the interaction within entire structure are

known. RDC assignment process generally, is very time-consuming and it requires

a large amount of experimental data that is often difficult to collect.Assigned RDC

data have also been utilized in a number of instances for identification of homologous

structures [31] [8] [58].

Another category of investigations focuses on development of simultaneous assign-

ment and structure determination from RDC data [77] [57]. While these methods
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help in extending the frontiers of science, they do not serve as an appropriate screen-

ing tool because they either rely on enormous amounts of RDC data acquired in

multiple alignment media, or assist in assignment of RDCs to an a-priori known

structure. Finally from the practical standpoint, acquisition of RDC data imposes

the additional requirement for successful preparation of alignment media. This issue

is continually mitigated through the introduction of new alignment media [69]. The

large-scale applicability of RDC acquisition has been established by the Structural

Genomics Centers (such as NESG http://spine.nesg.org/rdc.cgi) [17], where a large

fraction of their target NMR proteins (if not all) have been subjected to RDC data

acquisition. Relinquishing the need for assignment of NMR data significantly reduces

the financial and temporal cost of data acquisition. Unassigned RDC data contain

important structural information that can be extracted for the analysis of the protein

structure. Our laboratory has successfully developed a Probability Density Profile

Analysis (PDPA) method that utilizes unassigned RDC set to rapidly classify pro-

tein structures. PDPA also provides an optimal method of validating computationally

structures using a minimal set of empirical data [70] [23]. Identifying a homologous

structure for an unknown protein using PDPA should be of direct interest to struc-

tural biologists and pharmaceutical researchers, since they operate under the same

general constraints as the structural genomic centers, which consist of reducing the

cost of operation and increasing productivity. Rapid and cost-effective methods of

identifying protein structures, which are truly novel, could also serve to increase the

general efficiency of structure determination. Therefore, development of a method

utilizing unassigned data is highly desirable. This chapter introduces PDPA method.

First, the theory of the PDP is discussed, then one-dimensional PDPA and its appli-

cation are demonstrated. Finally, the shortcomings of one-dimensional methods are

brought to the reader’s attention at the end of this chapter.
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Figure 4.1: A powder pattern and the PDP for ARF (PDBID: 1HUR(180)) using
principal order parameters of -71.1, 47.4 and 23.7 in units of Hz.

4.1.1 Theoretical Background

The proposed method for PDP analysis uses Unassigned Residual Dipolar Cou-

pling (RDC) and Kernel Density Estimation (KDE) method for estimating probability

density function of RDC data for a given protein. We first provide a brief descrip-

tion of KDE. It can be shown that the distribution of dipolar couplings for a large

number of uniformly distributed vectors within a sphere will converge to a relatively

featureless powder pattern shown in Figure 4.1. The theoretical basis of this behavior

is well documented [13] [84] [53] [26] [87] [85] and an analytical form of this pattern

has been derived [87] [85]. While this powder pattern does not contain any useful

structural information, values for the principal order parameters (Sxx, Syy, Szz) can

be obtained by examining the extreme points of this distribution [27](see Section

3.5). However, proteins appropriate in size for NMR spectroscopy neither contain a

large number of vectors (of a specific type such as backbone Cα − Hα or N − H)

nor sample the entire space uniformly. The number of vectors in proteins (amenable

for NMR spectroscopy) remain finite, and their distribution in space significantly de-

parts from uniformity, dictated by the organization of vectors into groups established

by the tertiary structure of a protein. Violation of both requirements leading to a

featureless powder pattern results in a distribution of RDCs that is a direct function
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of the tertiary structure of a protein. The black line in Figure 4.1 is an illustration

of a powder pattern with the principal order parameters of 0.001, 0.002 and -0.003

(-71.1, 47.4 and 23.7 respectively in units of Hz for backbone N − H vectors). The

red line in this figure represents the distribution of the backbone, N −H RDC data

of a 20 kDa protein (the ADP ribosylating factor, PDBID:1HUR(180)) using the

same principal order parameters. This deviation can be exploited in order to de-

velop methods of identifying structural similarity based on the statistical profile of

the Residual Dipolar Couplings. Here we define a probability density profile (PDP)

as the estimated probability density of an observable set of unassigned RDC data

originated from a set of inter-nuclear vectors. The resulting PDP can be viewed as

a structural fingerprint. Comparison of the PDPs of two structures can provide in-

formation regarding their structural homology. To construct any statistical model

based on empirical data, utilizing probability density function (PDF) is a necessary

step. Parzen Density Estimation (PDE) [65] [36] is used as the main method of the

probability density function. Here a kernel representing the local properties of each

piece of datum is placed in the appropriate location. The final PDF can then be

estimated by the simple summation of all local-likelihoods as shown in Figure 4.2.

The appropriate choice for the kernel in this particular illustration is assumed to be

Gaussian distributions. Equation 4.1 describes the method of calculating PDP using

PDE and Equation 4.2 denotes the choice of Gaussian kernel.In Equation 4.1, KD

denotes individual kernel selected as a Gaussian function centered at the point Di

with standard deviation of σ (Equation 4.2). Also the variable n denoted the number

of observed dipolar coupling and Di is the value of the i-th dipolar coupling.

PDP (y) = 1
n

n∑
i=1
KD(y −Di) (4.1)

K(y) = 1
σ
√

2π
e
y2

2σ2 (4.2)
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Figure 4.2: An example of Parzen density estimation using Gaussian kernels applied
to four points.

4.1.2 Probability Density Profile Analysis

A PDP is defined as the distribution of observed (experimental) set of RDC

data which contains structural information about a protein. The distribution of a

RDC set usually does not contain large number of observable RDC vectors (such as

N −H or Cα −Hα) and acquired data are not distributed uniformly. Therefore, the

distribution of the experimental data deviates significantly from the ideal featureless

powder pattern (Figure 4.3). To facilitate further discussions, the concepts of query

and subject protein is established. A query protein is a structure for which the

experimental data have been obtained from NMR spectroscopy and is the subject

of investigation. Although to establish correctness of our method initially we used

several known protein structures, but we generally consider a query protein as a

protein that does not have a previously determined structure. A subject protein is a

structure that its structural information is already known. This information includes

the coordinates of the atoms and therefore the fold family to which it belongs. The

PDP of a query protein can be generated using experimental RDC data and is called

ePDP and the PDP of subject protein is called cPDP that can be computed with given

tensoral information from experimental RDC set. A comparison of two distributions

(ePDP and cPDP) can be used to assess and quantify the similarity between two
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Figure 4.3: Distribution of simulated RDCs for protein 1A1Z(91) (in red-dotted
color), with hypothetical order tensors. The horizontal axis in this figure represents
value of RDC data and the vertical axis represents the likelihood of observing a given
value of RDC.

structures. The entire process of utilizing ePDP and cPDP to measure(quantify)

the similarity between two structures is referred to as Probability Density Profile

Analysis(PDPA). Figure 4.4 illustrates the general approach used to implement the

PDPA algorithm. To estimate principal order parameters (Sxx, Syy and Szz) the

maxima of the distribution of the RDC data are taken to simplify the process. PDP

distribution is based on the orientation of the protein structure, therefore it is possible

that two identical protein structures, produce completely different PDP distribution.

This problem can be addressed by an exhaustive search on all possible orientations

of the subject protein to identify the best orientation. Selection of an appropriate

scoring method to quantify the similarity of two PDP is important. Several methods

are suggested in literature that potentially could be used as a suitable metric. χ2 and

Manhattan ( or city block) metrics are selected to be utilized in PDPA scoring [36].

The conventional χ2 is not appropriate because it does not produce a symmetric

result of the distance between two patterns; that is for pattern A and B, χ2(A,B) 6=
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Figure 4.4: General flowchart of the PDPA algorithm.

χ2(B,A). The main goal of our modification is to eliminate this lack of symmetry

while reducing the harsh penalty due to missing data.

S(cPDP, ePDP ) = 1
2

M∑
i=1

[χ2(ci, ei) + χ2(ci, ei)] (4.3)

χ2(c, e) =


(c−e)2

c
for c 6= 0

100e for c = 0
(4.4)

The term S(cPDP, ePDP ) in Equations 4.3 denotes the final comparison score be-

tween cPDP and ePDP. The summation index M denotes the number of points that

are sampled in comparing the two PDPs. ci and ei denote the values of computed

and experimentally determined PDPs at the location i, respectively. The distance at

any given position of two PDPs is determined by χ2(c, e) as defined in Equation 4.4.

Manhattan-block is another metric that is utilized in PDPA for comparison of cPDP

and ePDP (Equation 4.5).

S(cPDP, ePDP ) =
n∑
i=1
|ci − ei| (4.5)
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In Equation 4.5, ci and ei indicate the values of the computed and experimental PDPs

at the location i.

4.2 1D-PDPA Method and Results

The implementation of one dimensional PDPA (1D-PDPA) [12] [85] utilizes one

set of unassigned RDC data for the analysis. In this analysis, Parzen Density Dsti-

mation(PDE) is used as the main method of Parzen Density Function (PDF) estima-

tion [39] [18]. To demonstrate the sensitivity and selectivity of the PDPA method, a

number of experiments are conducted and are listed below.

4.2.1 The application of the 1D-PDPA in Identifica-

tion of Structural Homologous

The first evaluation of the PDPA was in application to simulated data without

any noise. A library of 21 protein structures representing 9 fold families has been

utilized in this exercise. The results of this experiment are listed in Table 4.1. The

first two columns of Table 4.1, list the PDB code for each used structure and the PDB

code of the family that is representative of each structure (reported by FSSP [43]),

respectively. Furthermore, the “Repr”column lists the family fold representative for

each structure and “Size”is the number of Amino Acids. The RMSD column is the

backbone rmsd between each protein and its family representative as reported by

FSSP. In this evaluation we treated the structure 1C99(79) as our query (unknown)

structure and the remaining 20 structures as our subject structures. With the excep-

tion of the structure 1A91(79), all other structures exhibited no significant sequence

similarity. The query structure 1C99(79) is a member of the family represented by

1A91(79). These two proteins share a 56% sequence identity and a 4.5 Å rmsd overlay

of α− carbons over residues 2-70. Program PALES [99] was used to predict an order
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Table 4.1: PDP analysis of the structure 1C99(79) with 20 different structures rep-
resenting 9 family folds.

PDB Code Repr. Size (aa) rmsd Score
1A91 1A91 79 0 4.98
1C99 1A91 79 3.3 0
1CII 1A91 101 2.8 4.13
1CXZB 1A91 86 3.3 4.77
1FH1 1FH1 92 0 7.01
1A8O 1A8O 70 0 23.6
1ACP 1A8O 77 2.9 8.51
1A1Z 1A1Z 91 0 13.2
3CRD 1A1Z 100 2.5 17.7
1A32 1A32 88 0 15.1
1CXZA 1A32 86 2.3 25.5
1RB9 1RB9 53 0 40.7
1RDG 1RB9 52 0.7 27.09
1CC5 1CC5 83 0 47.8
451C 1CC5 82 2.7 35.6
1CTJ 1CC5 89 2.5 35.2
1YCC 1CC5 108 2.7 43.0
1BBZA 1BBZA 58 0 50.6
1GCPA 1BBZA 65 1.9 46.0

tensor for the query structure 1C99(79). This order tensor was used to produce sim-

ulated RDC data for the query protein using REDCAT [84]. While it is obvious that

in the absence of any error, PDPA will succeed in identifying the original structure,

the point of this evaluation remains to assess its ability in the identification of other

members of the same protein fold family. After exploring all possible orientations

of alignment, the best score (described by Equations 4.3 and 4.4) has been reported

and is listed in the last column of Table 4.1. The results in this table indicate that

PDPA succeeded in identifying the correct family of the unknown structure, based on

unassigned RDC data. These results are encouraging but impractical, since the ad-

dition of noise can have a dramatic impact on the performance of any given method.

During an extension of this evaluation, noise was added to the computed RDC data
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Figure 4.5: Structure of all 12 proteins used in the application of PDP analysis of
Galectin3 (PDBID:1A3K(137)).

of 1C99(79). The results of this experiment (previously published, not shown here)

demonstrated that through appropriate selection of the smoothing factor (variances)

of kernel functions vital structural information can be successfully extracted [85].

The final evaluation of 1D-PDPA is the test of this approach in application to exper-

imental data. Here, backbone RDC data from Galectin-3 (PDBID:1A3K(137)) have

been utilized [68]. This set of data presented the most realistic scenario. Here only

80% of the backbone resonances had been observed. Furthermore, the experimen-

tally collected data contained as much as 50% error for some individual data points

(15 Hz error). Application of 1D-PDPA succeeded in selecting the correct structure

form a library of 12 other structures (Figure 4.5). In addition, the representative

of Galectin-3 family (PDBID:2GAL(135)) was also identified as a significantly close

structural relative. These results are listed in Table 4.2.

4.3 Limitation of 1D-PDPA Method

1D-PDPA illustrates a great potential for establishing structural similarity of an un-

known protein using unassigned RDC data therefore based on easily obtainable back-

bone N-H RDC data, one can ascertain the structural novelty of an unknown protein.

Structural templates can be selected for the purpose of threading using PDPA inde-

pendent of sequence homology. However, there are a number of impediments rooted
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Table 4.2: Results of PDP analysis to experimental data collected from Galentic3
(PDBID:1A3K(137))

Structure Size Score
1A3K 127 4.27
1A62 115 24.27
1A6JA 143 29.64
1A73A 148 21.18
1AERA 186 63.00
1AJQA 195 53.31
1AM2 169 56.75
1AMM 165 26.95
1APYA 150 42.68
1AVMA 191 16.25
1B2VA 169 23.12
1DK0A 169 22.63
2GALA 121 1.10

in properties of RDC data that need to be addressed to improve the PDPA selec-

tivity and sensitivity. Generally small proteins do not contain enough RDC vectors,

therefore comparison of the RDC distribution of the small proteins using one RDC

set, often lacks sensitivity. Also, the fact that experimental RDC data contain de-

vice errors in a certain range, potentially have an effect on the distribution of the

vectors and consequently on PDPA analysis. It is also possible that two completely

different structures produce identical PDPs if the structural relationship between the

two structures perfectly coincides with symmetric properties of the alignment, such

as inversion [4] [85]. To address these issues, collection of RDC data from two or

more independent alignment media, which is simple to obtain experimentally, should

differ between two structures exhibiting a close distribution of RDCs in perspective

of one alignment medium. While it is possible that the second alignment medium to

share the structural degeneracies, occurrence of this phenomenon for both datasets

in the same region should be unlikely if both alignment media differ from each other

by more than a simple scaling factor. Therefore utilizing second RDC set, can po-
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tentially be a solution for the limitations of 1D-PDPA listed above. Although the

expansion of 1D-PDPA to 2D-PDPA is straight forward, its expansion into higher

dimensions become computationally intractable. Therefore our challenges includes:

1. Expansion of existing 1D-PDPA technology to 2D-PDPA.

2. Development of meaningful interpretation of the results.

3. Re-engineering of the computational core to enable expansion into higher di-

mensions.

The expansion of PDPA that utilizes RDC sets from multiple alignment media, is

subject of this research that is discussed in detail in the next chapter.
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Chapter 5

2D-PDPA: Two Dimensional Probability

Density Profile Analysis

5.1 Introduction

In the following sections, the 2D-PDPA method, an extension of the 1D-PDPA is

discussed. Then the results of several experiments are presented. The results include

the performance of the 2D-PDPA method utilizing simulated RDC data modeled

from ideal conditions to prove the concepts, and experimental data that reflect more

pragmatic conditions. In this extent the focus is more on protein structures for which

both NMR and X-ray structures are known and their experimental RDC data are

available. Finally, the results of 2D-PDPA in ranking of computationally modeled

structures for a target protein with no known structure is presented.

5.2 Expansion of one dimensional to two di-

mensional of PDPA method

1D-PDPA method utilizes one RDC dataset from one alignment medium, and it

has demonstrated limited success when applied to large proteins due to the incapa-

bility of resolving different internuclear vectors with similar RDC values. Moreover,

NMR data acquisition error reduces the sensitivity of the data analysis, and can

produce an inaccurate RDC distribution. On the other hand, the RDC data from
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Figure 5.1: An example of a 2D-PDP map generated using kernel density estimation.
This 2D-PDP can serve as a structural fingerprint.

multiple alignment media are relatively easy to obtain and previous works have shown

that utilizing RDC sets from two alignment media, significantly reduces the degener-

acy problem and increases the information content, sensitivity and selectivity [3] [12].

2D-PDPA is an extension of the 1D-PDPA method that allows simultaneous analysis

of RDC data from a second alignment medium. The overall principle of 2D-PDPA

method is the same as 1D-PDPA that is two similar structures must exhibit a similar

distribution of RDC data as shown in Figure 5.1. In this figure, the distributions of

RDC points is a function of the protein structure and can be used as a structural

fingerprint of an unknown protein. Therefore the measure of the similarity between

two distributions of RDC data can be interpreted as a measure of structural similar-

ity. Overall operations of 2D-PDPA proceed in three main stages as shown in Figure

5.2. During the first stage, experimental RDC data are analyzed to estimate seven of

the ten needed parameters [62] [97] that are used to back-calculate RDC data from

any given structure in two alignment media. During this stage, the scattering of
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Figure 5.2: Operational schematic of the 2D-PDPA method illustrated in three main
phases.

the RDC data in two alignment media is converted to a distribution function using

Kernel Density Estimation [39] [42] [85]. This distribution is constructed through

superposition of Gaussian kernels that are centered at each RDC data point Figure

5.1 illustrates an example distribution map that is denoted as ePDP throughout this

report. An ePDPA is referred to as a distribution map (or a fingerprint) that is gen-

erated from experimental data. During the second phase of 2D-PDPA, a similar map

is created based on the back-calculated RDC data from each of the protein struc-

tures available in the library of structures using the same Kernel Density Estimation

procedure. The computed maps are denoted as the cPDPs. For each structure in

the database, a cPDP is created for each possible rotation of the structure in a grid

search over the Euler angles (α, β, γ) at the resolution of 5 ◦. Each of these cPDPs is

compared to the ePDP and the best score as well as the corresponding Euler angles

are recorded for each structure in the database. These 46,656 (36× 36× 36 rotations

over α, β, and γ) alternate cPDPs are created as a result of a 5 ◦ grid search over the
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three remaining parameters that are needed for back-calculation of the RDC data.

These three remaining parameters essentially represent all possible orientations of any

given structure. RDCs are insensitive to 180 ◦ rotations; hence the search space can

be reduced to a range of [0 ◦−180 ◦] in increments of 5 ◦ for each parameter. The best

matching score and its corresponding three search parameters are recorded for the

third and final stage of 2D-PDPA. During the concluding stage of the 2D-PDPA, all

of the proteins in the library of structures are ranked based on their 2D-PDPA fitness

score, which was measured during the previous stage, and the results are reported.

5.3 Scoring and Interpretation of 2D-PDPA

Raw Scores

In contrast to 1D-PDPA [85] [12] that utilizes χ2 metric [42] of comparison, 2D-

PDPA employs a more intuitive Manhattan (or City-Block) metric for comparison of

cPDP and ePDP. Equation 5.1 describes the Manhattan distance that is computed

by 2D-PDPA. In this equation B denotes the 2D-PDPA′s raw score (Block score), the

summation indices i and j traverse the entire range of RDCs over the two alignment

media M1 and M2, and σi and σj denote the step size of uniform grid sampling

along each of the RDC dimensions.In this equation cPDPij and ePDPij represent

the likelihood reported by each PDP set at locations i and j. Since the cPDP and

ePDP are normalized to be a qualified probability density functions, their integral

over the entire range of RDCs equates to one. Therefore the block-score will have an

effective range of [0− 2], where a score of 0 indicates 100% similarity and a score of

2 indicates 0% similarity between the two structures.

B2D_PDPA =
Max(M1)∑
i=Min(M1)

Max(M2)∑
j=Min(M2)

|cPDPij − ePDPij|.σi.σj (5.1)
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In instances where meaningful bb-rmsd values can be calculated between the members

of the search database and the unknown protein, a more informative relationship

between the 2D-PDPA’s B-score (see Section 5.3) and the expected bb-rmsd can

be established. Such interpretation patterns can be created based on the following

observations:

1. Interpretations patterns are primarily a function of class of protein structure

(α and β protein) and protein size

2. Interpretation patterns depend on completeness of data

3. Interpretation patterns exhibit a dependency on quality of experimental data,

and more directly on the quality of the two estimated order tensors

The latter dependency is intuitive and is investigated in the literature [85] [12] [62] [97]

and it is therefore not discussed further in this report. We demonstrate the first

and second above dependencies by generating a scatter plot of bb-rmsd versus their

corresponding B-score for 1000 derivative structures. These derivative structures were

generated by randomly altering backbone dihedral angles of the native structure for

a given protein. The ensemble of altered structures was used to compute a B-score

and bb-rmsd with respect to the native structure. In this exercise, we have used two

sample α−proteins (1A1Z and 2M67) and two sample β−proteins (1F53 and 1PMR)

that are approximately of equal sizes. Table 5.1 shows the detailed information for

each of these four proteins. It is important to note that the two proteins in each

structural class are unrelated. Figure 5.3 illustrates the interpretation patterns for

each of the two classes. The two patterns are remarkably well conserved between

the two proteins from the same structural class. Any noted differences are due to

random sampling of the RDC space and will be resolved by increasing the number

of random sampling. These interpretation patterns also exhibit a very predictable

behavior as a function of missing data. To illustrate this point, we performed a similar
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Table 5.1: List of four proteins that are used in establishing the properties of 2D-
PDPA bb-rmsd interpretation patterns

Protein
PDBID Protein Size CATH

Classification

Number of
Secondary

Structural Elements
1A1Z 83 1.10.533.10 11 α− helices
2M67 81 Not available yet 6 α− helices
1F53 84 2.60.20.30 6 β − strands
1PMR 80 2.40.50.100 6 β − strands

(a) (b)

Figure 5.3: Sensitivity of 2D-PDPA analysis as a function of bb-rmsd when applied to
(a) two unrelated α-proteins and (b) two unrelated b-proteins. Simulations included
addition of ±0.5 Hz of uniformly distributed noise.

(a) (b)

Figure 5.4: Sensitivity of 2D-PDPA analysis as a function of bb-rmsd on two α-
proteins 1A1Z(91) and 2M67(81) (a) with 25% of the data randomly removed and
(b) with 30% of the data randomly removed.
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exercise as above on the α−protein set 1A1Z, 2M65 by randomly removing 25% and

30% of the data. The final results are shown in Figure 5.4 and as expected, the

lowest scores correspond to the percentage of missing data (shown in Equation 5.2).

This exercise was repeated for a number of other proteins with very similar results

(not shown here). Based on this observation, a corrected score can be computed

by subtracting the fraction of missing data from the raw score. This correction

eliminates the contribution of missing data and allows for easier comparison of 2D-

PDPA’s scoring mechanism across different instances of analyses:

CorrectedScore = RawScore−MissingData (5.2)

The noted properties of the 2D-PDPA’s Block scoring mechanism enables the creation

of an interpretation pattern from another protein with similar structural attributes as

the target protein. The resultant interpretation pattern can then be used to establish

the quality of the 2D-PDPA’s selected structure.

5.4 2D-PDPA Results and Discussion

5.4.1 Structure Identification from Simulated RDC

Data

2D-PDPA was validated using synthetic data generated from eleven different pro-

tein structures (listed in Table 5.2) to represent a spectrum of sizes and structure

types. Data from each protein structure was used to identify the correct structure

from a library of 619 decoy representative structures. In each test case, the decoy

structures that were not within ±20 percent size of the target structure were elim-

inated from the pool of potential candidates. This filtering mechanism reduced the

list of possible structural candidates to within 100 for proteins with less than 120

residues in length, and around 20% for larger proteins (more than 250 residues). The
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Table 5.2: Results of structure identification using simulated data.

Target
Structure

Size(# of NH
Vectors) Error Added Rank

1BRF 46 ±1 hz 1
1P7E 55 ±1 hz 1
1SF0 67 ±1 hz 1
1BQZ 75 ±1 hz 1
110M 149 ±1 hz 1
1NCX 160 ±1 hz 1
1QHSA 172 ±1 hz 1
3FIB 241 ±1 hz 1
16V PA 289 ±1 hz 1
1V SGA 353 ±1 hz 1
1A4AA 445 ±1 hz 1

identification results of 2D-PDPA on the eleven randomly selected test proteins are

shown in Table 1. The first column of this table lists the PDB-ID of each protein,

followed by the protein size (based on the number of N −H vectors), the magnitude

of the uniformly added noise, and the ranking of each protein by 2D-PDPA.

5.4.2 Structure Identification Using Experimental RDC

Data

A search through the BMRB [35] database resulted in three proteins with back-

bone RDC data from two or more alignment media. These three proteins consisted

of 1P7E [81], 1D3Z [28] and 1RWD [77] with backbone N −H RDC data from two

alignment media. Structural homologous (both NMR and X-ray when possible) were

added to our existing database of 619 decoy structures to examine 2D-PDPA’s ability

to identify the actual or any homologous structures. Table 5.3 shows the results for

the protein structure 1P7E. The structure 1P7E was identified as the highest plausi-

ble structure by the 2D-PDPA as expected. Of even more interest, however, are 2nd

and 3rd place rankings, which consisted of 1IGD and 1P7F. These are the structural
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Table 5.3: Results of structure identification from unassigned experimental RDC data
for the protein PDBID:1P7E.

Library
Structure

Size(# of NH
Vectors) Rank Raw Score

1P7E 55 1 hz 0.45
1IGD 59 2 hz 0.47
1P7F 55 3 hz 0.48

Figure 5.5: Cartoon representation of proteins 1P7E(56) (yellow), 1IGD(61) (blue)
and 1P7F(56) (red).

homologous added to the library, and are ranked 2nd and 3rd respectively. The struc-

tures 1P7E, 1IGD and 1P7F exhibit around 1.0 Å of difference measured over the

backbone atoms as shown in Figure (5.5). These results exhibit 2D-PDPA’s ability

to identify not only the identical structure from a library of decoys, but also other

homologous structures. Of even more importance is the fact that this experiment

was performed with relatively small amounts (43 RDCs from 55 residues, 78%) of

experimental data.

For 1RWD (results shown in 5.4), its X-Ray determined homologous 1BRF (bb-

rmsd of 1.8 Å with respect to 1RWD as shown in Figure 5.6) ranked first. The

1RWD structure ranked second behind 1BRF. At first it may seem odd that the

X-Ray structure outranked the NMR structure. However, although 2D-PDPA ranks

1BRF as the better suited structure, the ranking score of 1BRF is negligibly better

than 1RWD. Furthermore, it is generally accepted that X-Ray structures fit RDC
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Table 5.4: Results of structure identification from unassigned experimental RDC data
for the protein PDBID:1RWD.

Library
Structure

Size(# of NH
Vectors) Rank Raw Score

1BRF 46 1 0.661
1RWD 43 2 0.667

Figure 5.6: Cartoon representation of the superimposed structures 1BRF(53) (yellow)
and 1RWD(53) (blue).

data better than NMR structures. This experiment once again demonstrates 2D-

PDPA’s success in finding structural homologous within a large library of possible

structures.

5.4.3 Computationally Modeled Structure of PF2048.1

PF2048.1 is a 9.16 kDa, 78 residues; (including His-tag) monomeric protein with

less than 26% sequence identity to any structurally characterized protein. An ensem-

ble consisting of ten modeled structures from ROBETTA [46] [12] and five modeled

structures from I-TASSER [98] for the unknown protein PF2048.1 were obtained

(superimposed structures shown in Figure 5.7). Table 5.5 lists the results for an ex-

haustive pairwise comparison of the ensemble of fifteen structures measured over the
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Figure 5.7: Fifteen modeled structures of PF2048.1 by ROBETTA and I-TASSER.

backbone atomic positions. In this table, structures R1-R10 and I1-I5 correspond

to the ROBETTA and I-TASSER structures respectively. The areas of this table

that are shaded in green or yellow correspond to the intra-modeling distances, while

the dark-blue areas correspond to the inter-modeling distances. Based on these re-

sults, structures modeled by ROBETTA exhibit structural similarity in the range of

2.91Å-7.83Å while structures modeled by I-TASSER exhibit more convergence with

structural similarity in the range of 1.21Å-3.62Å. It is clear from this exercise that

both methods have been successful in producing a reasonable model of the structure

since all of them consist of a bundle of four helices. It is also clear that in the ab-

sence of a-priori knowledge of the protein’s structure, selection of the most suitable

structure would have not been possible. Due to the general lack of convergence in

the modeled structures, arbitrary selection of a model could lead to an erroneous

structure.
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Table 5.5: Pairwise bb-rmsd of the ten structures modeled by ROBETTA and five
structures modeled by I-TASSER.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 I1 I2 I3 I4 I5
R1 0 6.51 2.93 3.01 2.95 3.39 4.33 3.37 2.73 5.42 4.43 5.14 4.82 4.25 3.48
R2 6.51 0 7.32 7.52 6.62 6.44 7.04 8.05 7.83 6.29 7.49 7.51 7.93 7.69 7.71
R3 2.93 7.32 0 4.8 5.17 3.08 6.19 4.06 3.69 4.11 6.45 7.21 7.06 6.21 5.29
R4 3.01 7.52 4.8 0 3.34 5.26 2.91 3.75 2.68 7.31 3.08 3.78 3.85 3.23 2.79
R5 2.95 6.62 5.17 3.34 0 4.72 3.1 4.04 3.94 6.81 3.32 3.78 3.66 2.96 2.83
R6 3.39 6.44 3.08 5.26 4.72 0 5.75 5.69 3.75 3.49 6.52 7 6.84 6.18 5.56
R7 4.33 7.04 6.19 2.91 3.1 5.75 0 5.45 4.2 7.73 2.89 3.02 3.56 3.22 3.43
R8 3.37 8.05 4.06 3.75 4.04 5.69 5.45 0 4.36 7.06 4.87 5.77 5.74 4.61 3.73
R9 2.73 7.83 3.69 2.68 3.94 3.75 4.2 4.36 0 6 4.92 5.57 5.25 4.77 4.04
R10 5.42 6.29 4.11 7.31 6.81 3.49 7.73 7.06 6 0 8.48 8.85 8.86 8.23 7.6
I1 4.43 7.49 6.45 3.08 3.32 6.52 2.89 4.87 4.92 8.48 0 1.21 2.75 1.31 1.91
I2 5.14 7.51 7.21 3.78 3.78 7 3.02 5.77 5.57 8.85 1.21 0 2.55 1.89 2.89
I3 4.82 7.93 7.06 3.85 3.66 6.84 3.56 5.74 5.25 8.86 2.75 2.55 0 3.07 3.62
I4 4.25 7.69 6.21 3.23 2.96 6.18 3.22 4.61 4.77 8.23 1.23 1.89 3.07 0 1.44
I5 3.48 7.71 5.29 2.74 2.83 5.56 3.43 3.73 4.04 7.6 1.91 2.89 3.62 1.44 0

5.4.4 2D-PDPA Ranking of the Modeled Structures

2D-PDPA was applied to the ensemble of ten modeled structures of PF2048.1 by

ROBETTA and five models by I-TASSER. Due to experimental conditions only 49

RDC data points were obtained from this protein in two alignment media. Consid-

ering the size of the PF2048.1 protein (79 residues), 49 RDC data points constitutes

only 62% of the complete dataset (38% missing data). The relative order tensors

describing the alignment of this protein in each of the media were determined using

the previously reported 2D-RDC [62] method (λ−map shown in Figure 5.8) and are

listed in Table 5.6. Results of the 2D-PDPA ranking of ROBETTA and I-TASSER

structures are shown in Table 5.7 and Table 5.8 respectively. The three columns in

these tables list the structural identifiers, 2D-PDPA’s raw score for each structure,

and the corrected scores respectively. The corrected scores are based on contribu-

tion of the percentage missing data on the raw score and are computed as shown in

Equation 5.2. By selecting a reasonably stringent raw score of 0.8 (corrected score of

0.42) as the cutoff threshold for structural quality, the list of fifteen structures can
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Figure 5.8: Results of 2D-RDC analysis based on unassigned data from PF2048.1
obtained in Phage and PEG alignment media. The blue lines indicate the convex
hull of the 2D-RDC dataset determined from the experimental data and the red line
indicates the convex hull of the distribution of 2D-RDC data points for the order
tensor estimate.

Table 5.6: Order tensors of PF2048.1 estimated from 2D-RDC analysis using unas-
signed RDC data from two alignment media (Phage and PEG).

Sxx Sxy Sxz Syy Syz Da
M1(Phage) 2.04E-04 0.00E+00 0.00E+00 7.11E-04 0.00E+00 -10.8
M1(PEG) -9.14E-04 1.71E-05 1.61E-04 -8.55E-04 3.89E-04 -13.03

be reduced to five; R5 and R1 of the ROBETTA structures, and I5, I4, and I2 of

the I-TASSER. Figure 8 illustrates the superposition of these five structures with an

average bb-rmsd of 2.53 Å. The emergence of structural convergence among the top

five selected structures signifies the systematic selection mechanism of 2D-PDPA. It

is important to note that 2D-PDPA’s selection mechanism is exclusively based on fit-

ness to the experimental data and not simply based on clustering of the bb-rmsd data

shown in Table 5.5. This independent and yet consistent selection between 2D-PDPA

and bb-rmsd provides a strong evidence for accuracy of the top five structures.
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Table 5.7: 2D-PDPA scores for the ten ROBETTA structures.

Modeled
structure

2D-PDPA raw
score

2D-PDPA
corrected score

R5 0.74 0.36
R1 0.79 0.41
R8 0.81 0.43
R4 0.81 0.43
R7 0.82 0.44
R2 0.82 0.44
R6 0.83 0.45
R10 0.84 0.46
R9 0.85 0.47
R3 0.87 0.49

Table 5.8: 2D-PDPA scores for the five I-TASSER structures.

Modeled
structure

2D-PDPA raw
score

2D-PDPA
corrected score

I5 0.73 0.35
I4 0.76 0.38
I2 0.78 0.40
I3 0.81 0.43
I1 0.82 0.44

5.4.5 Interpretation of 2D-PDPA Results for Modeled

Structures of PF2048.1

Results listed in Table 5.7 and Table5.8 rank the fitness of the modeled structures.

However these results do not provide any information regarding the accuracy of the

modeled structures with respect to the solution state structure of this protein. This

information can be retrieved from further analysis of the raw scores that are provided

by 2D-PDPA. To interpret the results of 2D-PDPAmeaningfully, a simulation exercise

has been conducted to relate the PDPA fitness score to backbone RMSD. Here we

have utilized protein 1A1Z (83 residues) as a comparable structure to PF2048.1 on the
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Figure 5.9: An interpretation patter for the protein PF2048.1, which illustrates the
relationship between 2D-PDPA’s score and structural quality in bb-rmsd.

basis of its size and α−helical nature. RDC data have been computed for these two

proteins using typically observed order tensors as shown in Table 5.6.Each dataset

has been corrupted through the addition of ±0.5 Hz of uniformly distributed noise.

One thousand derivative structures have been generated from the native structure

by randomly perturbing the backbone dihedral angles (φ, ψ). The set of derivative

structures provided a sampling of the bb-rmsd in the range of 0-8Åwith respect to

the starting structure. The 2D-PDPA procedure was then applied to the set of 1000

sample structures. Figure 5.9 shows the scatter plot of 2D-PDPA scores versus the

backbone rmsd’s. This figure is very valuable in establishing the operational limits of

2D-PDPA as a function of data quality, and help in interpreting the results shown in

Table 5.7 and 5.8. Based on the extrapolated upper and lower boundaries, the scores

of 2D-PDPA can be converted to a range of bb-rmsd with respect to the solution

state structure of the PF2048. Table5.9 lists the lower and upper estimates of bb-

rmsd for each of the top five modeled structures. Therefore it can be concluded with

high certainty that the R5 and the I5 structures are within 3Åof the solution state
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Table 5.9: Results of 2D-PDPA analysis of modeled structures for PF2048.1 with
the estimated range of bb-rmsd to the solution state structure using 1A1Z(91) as a
template for the interpretation pattern.

Modeled
structure

2D-PDPA
corrected score Lower bb-rmsd(Å) Upper bb-rmsd(Å)

I5 0.35 0.22 2.72
R5 0.36 0.25 3.00
I4 0.38 0.30 3.67
I2 0.40 0.37 4.48
R1 0.41 0.41 4.95

structure of the PF2048.1.
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Chapter 6

nD−PDPA: n−Dimensional Probability Density

Profile Analysis

6.1 Introduction

In principle PDPA does not have to be limited to two sets (as in 2D-PDPA)

or homogeneous data types (e.g. using only Cα − Hα RDC sets). During RDC

data acquisition, additional relevant data (such as Cα −Hα) are oftentimes available

and will add little impact on data acquisition time. A minimal extension of data

acquisition time can provide significantly more experimental data such as two or more

RDC data sets( from N-H, Cα−Hα). Integration of additional data sets is predicted to

substantially increase the information content and therefore significantly improve the

sensitivity and robustness of the PDPA method. However, the inclusion of more RDC

sets significantly increases the computational time of the analysis, which would render

it computationally intractable. Moreover, 2D-PDPA program lacks the capability of

utilization of more than two RDC sets. To fulfill these requirements, the development

of an improved PDPA engine is required. In the following sections, nD-PDPA method

is described then the result of 2D-PDPA and nD-PDPA are compared for accuracy,

sensitivity and measure of execution time. Finally, the nD-PDPA method is validated

by utilizing protein structures varying in size and secondary structures with synthetic

data.
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6.2 Expansion of 2D-PDPA to nD − PDPA

The details of the PDPA method are described previously [38], [85], [12] (for

more information also see Chapters 4 and 5 of this manuscript). In this manuscript

we provide a brief overview of the PDPA method and focus primarily on the new ad-

ditions and improvements of the nD-PDPA. The core principle of the PDPA method

is based on the fact that two similar structures should produce the same distribution

patterns of RDCs, and can be used as a structural fingerprint. Therefore, measure-

ment of the similarity between two distributions can be interpreted as similarity of

two structures. The nD-PDPA algorithm is encapsulated in three functional layers.

In the first layer, the experimental RDC sets are used to estimate the relative order

tensors [60], [62]. The number of parameters needed in this stage is a function of the

number of alignment media in which RDC data are acquired. Generally for RDC

data from n alignment media, 5n-3 parameters are required to describe the relative

order tensors [97]. The estimated order tensor parameters are utilized to back cal-

culate the RDC data for a given structure. Then the n-dimensional Kernel Density

Estimation is utilized to construct the distribution map for both experimental and

calculated RDC sets. The kernel Density Distribution is calculated based on a hyper

dimensional Gaussian Kernel function (described in Equation 6.1) that is located at

the center of each RDC data point (Figure 6.1). In this equation X denotes indepen-

dent function parameters and M denotes the vector of RDCs that defines the center

of the kernel and Σ is covariance matrix. Both X and M vectors are of size k while

the Σ is a matrix of size k x k:

N(X
∨
M,Σ) = (2π)−k‖Σ‖−kexp[−1

2(X −M)′Σ−1(X −M)] (6.1)

The orientation of the anchor alignment medium [38], [85], [12]is exhaustively searched

with respect to the reference structure. Therefore in the second stage the PDP

map is calculated for the subject structure in every possible orientation using a grid
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Figure 6.1: An example of a 2D-PDP map, using kernel density estimation. This
2D-PDP can serve as a structural finger print.M1 and M2 denote RDC sets from two
alignment media.

search over the Euler angles (α, β, γ) at the resolution of 5deg. The best score is

calculated from comparison of the experimental and calculated RDC distributions for

all orientations and this score is reported as the final result in the third stage. The

process is repeated for every structure in a given library of structures.

6.3 Scoring of the nD-PDPA vs. 2D-PDPA

Manhattan (City Block) metric [42] (shown in Equation 6.2) had been utilized in

2D-PDPA to compare calculated and experimental probability density distributions.

In this equation Bscore denotes the 2D-PDPA score; the summation indexes i and
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j cover the entire range of RDCs over alignment media M1 and M2; and cPDPij

(calculated PDP) and ePDPij (experimental PDP) denote the likelihood of the RDC

values at the location i and j. 2D-PDPA utilizes the locations of i,j that are repre-

sented by a 64 × 64 grid. This grid is constructed by uniformly sampling the entire

range of both RDC sets for both ePDP and cPDP. Utilization of the grid guarantees

the similar intervals and range (begins with minimum RDC and ends with maximum

RDC values) for both cPDP and ePDP.

Bscore =
Max(M1)∑
Min(M1)

Max(M2)∑
Min(M2)

|cPDPij − ePDPij| (6.2)

In order to be qualified for probability density functions, the summation of ePDP and

cPDP for the entire range of RDC values are normalized to be zero. Therefore the

Bscore ranges from [0-2]. The Bscore of 2 refers to completely dissimilar structures and

Bscore of 0 refers to 100% structural similarity. The other factors such as RDC error

and availability of data also effects in the Bscore. Comparison of ePDP and cPDP in

a grid fashion is the main contributing factor for the exponential time-complexity of

this approach. In that sense, expansion of ePDP and cPDP patterns to n-dimensions

requires an exponentially increasing number of grid points (64n if 64 points along

each dimension) to serve as the location of comparisons by a factor of grid size.

This quickly becomes a limiting factor for n > 2. Moreover, since RDC data are

not uniformly distributed [85], any PDP distribution will contain large areas with a

likelihood of zero or near zero. Incision of these unimportant regions for comparison

of two PDPAs consumes unnecessary computational time (Figure6.2). The score in

nD-PDPA is on the other hand, calculated by comparison of only the information rich

regions within the distributions. By using this approach the regions with likelihood

of zero or close to zero are not considered for calculation and therefore exponential

contribution of the grid size is eliminated.
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Figure 6.2: 2D-PDPA utilizes a 64 by 64 grid for both computational and experimen-
tal RDC sets for scoring. The out of boundaries area are unnecessary for calculation.

6.4 Results and Discussion

In this section the results of the experiments conducted on various protein struc-

tures using nD-PDPA are demonstrated. The listed experiments are categorized into

two major groups of experiments utilizing synthetic data and experiments utilizing

experimental data. In each category, the preparation of the corresponding data and

the objective of the experiment are explained in details.

6.5 nD−PDPA analysis utilizing synthetic RDC

datasets

6.5.1 Data Preparation

Three structures are shown in table 6.1 are used throughout our experiment.

These proteins have been selected on the basis of secondary structure representing

distinct secondary structure categories α, β and α/β (Figure 6.3). The atomic co-

ordinates of the structures are obtained from Protein Data-Bank [14]. Three sets

of RDCs including N-H vectors representing first alignment medium and N-H and
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(a) 1A1Z(83) (b) 1OUR(114)

(c) 1G1B(164)

Figure 6.3: cartoon representation of the proteins used in the experiment
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Table 6.1: List of the protein structures that are used for the experiment.These
structures are obtained from Protein Data Bank.

Protein Secondary
Structure

Number of
Residues

CATH
Classification

1A1Z α 83 1.10.553.10
1OUR β 114 2.60.120.40
1G1B α /β 164 3.40.1410.10

Table 6.2: List of initial order parameters generated by REDCAT that are used to
calculate RDC sets.

Sxx Syy Szz α β γ
M1 3e-4 5e-4 -8e-4 0 0 0
M2 -4e-4 -6e-4 10e-4 10 20 30

Cα-Hα vectors representing second alignment medium are generated under two con-

ditions: 1- Ideal RDC sets containing no error, 2- corrupted RDC sets through the

addition of ±1Hz of uniformly distributed noise with 25% of RDCs randomly elimi-

nated from each set to better represent pragmatic conditions. The first set (no error)

that represents the ideal conditions is utilized for demonstrating the proof of concept

and the second set represents a more realistic conditions. To generate synthetic RDC

sets the software REDCAT [84] was used with the initial relative order tensors listed

in Table 6.2. Upon completion of the data generation, the assignment information

is discarded before utilization of the synthetic RDC data in nD-PDPA. To back cal-

culate the order tensors two approaches were used: First the optimal order tensor is

calculated using REDCAT and second estimation of the order tensors were conducted

using approximation method as described previously [62]. Estimation of the order

tensor parameters is of central importance for PDPA analysis in the absence of atomic

coordinates of a structure. 2D and 3D approximation software were used [60] [62] to

estimate relative order tensors that can be employed in PDPA analysis. In nD-PDPA
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Table 6.3: Order Tensor parameters estimation using 2D-Approx software for the
data listed in Table 6.2. The data is corrupted by ±1Hz of error and 25% of the
RDCs are removed from datasets.

Sxx Sxy Sxz Syy Syz
M1 0.00028 -5.38e-07 4.71e-07 0.00045 1.86e-07
M2 0.00043 -0.00042 0.00023 0.00073 -0.00013

experiments, relative order tensors are estimated utilizing approximation when the

data are synthetically corrupted by adding errors (Table 6.3).

6.5.2 The comparison of 2D-PDPA and nD − PDPA re-

sults

The objective of this experiment is to establish the relation between nD-PDPA score

and bb-rmsd. To accomplish this objective 1000 decoy structures were generated from

the native structure by randomly altering the φ and ψ angles to generate structures

with bb-rmsd in the range of 0-8Å of the native structure. The entire ensemble of the

decoy structures was then subjected to evaluation by nD-PDPA. Finally, the scatter

plot of bb-rmsd versus nD-PDPA scores were used to observe any significant patterns.

Previously the universal funneling effect of such an exercise had been demonstrated

[38] for proteins regardless of their structural characteristics. In this experiment,

we repeat the previous exercise using nD-PDPA engine and compare some of the

results with the previous PDPA program (2D-PDPA). To conduct this experiment,

the protein 1A1Z was selected with RDC data generated in REDCAT [84] with no

added error. Figure6.4(a) shows the relationship between 2D-PDPA score and bb-

rmsd for one thousand decoy structures generated from reference structure 1A1Z.

The same experiment was conducted using nD-PDPA engine in Figure6.4(b). As it is

mentioned in the previous section, in nD-PDPA engine the comparison for calculated

and experimental PDP is based on the RDC points and not by 64 by 64 grid as it is
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(a) (b)

Figure 6.4: (a) Calculated nD-PDPA scores vs. bb-rmsd for protein 1G1B using two
N-H RDC sets. (b) Calculated nD-PDPA scores vs. bb-rmsd for protein 1G1B using
two N-H and Cα-Hα RDC sets.

Figure 6.5: The funneling pattern of nD-PDPA score and bb-rmsd of 1000 decoy
structures for protein 1A1Z(83). Three N-H RDC sets were used to conduct this
experiment.

performed in 2D-PDPA.

This may reduce the sensitivity of the scoring in nD-PDPA compared to the 2D-

PDPA ( the R2 fitness for 2D-PDPA is slightly better than R2 in nD-PDPA analysis

in Figure6.4). The lack of sensitivity can be addressed by adding more RDC sets

improving the information content of the nD-PDPA analysis and nD-PDPA score

fitness. Figure6.5 shows the nD-PDPA analysis using three N-H RDC sets from

three alignment media. The R2 shows improvement, compared to both 2D-PDPA

and nD-PDPA analysis using two RDC sets (Figure6.4(a) and (b)). In the previous
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(a) (b)

Figure 6.6: 250 decoy structures (1A1Z as reference) with (a) two N-H RDC sets
(2D-PDPA) (b) three N-H RDC sets (nD-PDPA). 25% of the data were randomly
removed from each set.

experiment, the improvement of R2 in ideal conditions by adding more RDC data

was demonstrated. It is useful to utilize RDC data that is closer to the experimental

conditions. The Previous experiment was repeated by randomly removing 25% of the

RDC values for protein 1A1Z. In Figure 6.6(a) and (b), the results of 2D-PDPA and

nD-PDPA (using three sets of N-H RDC vectors) analysis are demonstrated. The

score and bb-rmsd fitness score shows a better correlation in the case of nD-PDPA

(n=3) analysis.

6.5.3 The improvement of the fitness score by adding

extra RDC sets

In the previous experiment, protein 1G1B(164) was used, and RDC datasets were cor-

rupted by the addition of ±1Hz of uniformly distributed error and randomly removing

of 25% of the RDC values from each set. 250 structures were generated by altering

backbone torsion angles range from 0-6Å from 1G1B. In Figure6.7(a) nD-PDPA anal-

ysis was conducted by using two N-H RDC sets from two alignment media and in

Figure6.7(b) the analysis was conducted by utilizing two non-homogeneous RDC sets,

N-H and Cα-Hα from two alignment media respectively. R2 values for both exper-
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(a) (b)

Figure 6.7: (a) Calculated nD-PDPA scores vs. bb-rmsd for protein 1G1B using two
N-H RDC sets. (b) Calculated nD-PDPA scores vs. bb-rmsd for protein 1G1B using
two N-H and Cα-Hα RDC sets.

Figure 6.8: Calculated nD-PDPA scores vs. bb-rmsd for protein 1G1B utilizing three
sets of RDC. Two of which are N-H sets and the third one is Cα-Hα. R2 value is
improved in comparison to utilization of two RDC sets.

iments are approximately similar (approximately 0.7). Figure6.8 shows the plot of

nD-PDPA analysis for protein 1G1B by adding Cα-Hα as the third RDC set to the

collection of two N-H RDC sets. The R2 = 0.8146 indicates the improvement of nD-

PDPA analysis fitness compared to two sets of RDCs (Figure6.6(a) and (b)). The

experiment once again confirms the improvement of the bb-rmsd and PDPA score

fitness by adding more RDC data. Tables 6.4 and 6.5 demonstrate the R2 value for

two of the proteins listed in Table 6.3. In Tables 6.4 and 6.5 in all instances the value

of the R2 decreases by introducing error to the data ( compare second and third col-

69



www.manaraa.com

Table 6.4: Summary of the results of 1OUR using RDC sets without any error (sec-
ond column) and RDC sets with ±1Hz error and 25% of RDC values randomly
removed(third column)

Protein 1OUR R2 no error R2 error
NH-NH 0.5781 0.4522
NH-CαHα 0.6797 0.4935
NH-NH-NH 0.7273 0.7026
NH-NH-CαHα 0.6573 0.6547

Table 6.5: Summary of the results of 1G1B using RDC sets without any error (sec-
ond column) and RDC sets with ±1Hz error and 25% of RDC values randomly
removed(third column)

Protein 1G1B R2 no error R2 error
NH-NH 0.6924 0.6995
NH-CαHα 0.7204 0.7080
NH-NH-NH 0.7494 0.7575
NH-NH-CαHα 0.8029 0.8146

umn of Tables 6.4 and 6.5). Moreover, the value of R2 increases by adding an extra

set of RDC. The improvement is manifested in the greater degree in the erroneous

data sets. For example in Table 6.4 R2 for three N-H RDC sets demonstrates about

0.35 improvement, compared to two N-H RDC sets (See the darker background cells

in Table 6.4).

6.6 nD−PDPA analysis utilizing experimental

RDC data sets

Two structures shown in table 6.6 and 6.9 are used throughout our experiment.

These proteins have been selected on the basis of the availability of the experimen-

tal data in BMRB database [82] [35] with backbone RDC data from two or more

alignment media.
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Table 6.6: Protein structures that are obtained from BMRB database based on avail-
ability of experimental RDC.

Protein Secondary
Structure

Number of
Residues

CATH Clas-
sification

1P7E α/β 56 3.10.20.10
1D3Z α/β 76 3.10.20.90

(a) 1P7E(56) (b) 1D3Z(76)

Figure 6.9: Cartoon representation of the proteins used in the experiment

Table 6.7: This table shows the QFactor for 5 N-H RDC sets for protein 1P7E.

Alignment Media QFactor
M1 0.0232
M2 0.0286
M3 0.0393
M4 0.0259
M5 0.0325

6.6.1 Data Preparation for Protein 1P7E

Five sets of N-H RDC sets are available for protein 1P7E. Only 71% of the data are

presented in each set.The QFactor of each set of RDC are listed in Table 6.7.

In order to estimate the order tensor values, 2D and 3D approximation software

(2Dapprox [62] [97]) are used. Table 6.8 shows the relative Order Tensor estimated
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Table 6.8: List of relative Order Tensor values estimated for M1 and M2 with respect
to M1. Also M3 and M4 with respect to M3 for protein 1P7E.

Sxx Sxy Sxz Syy Syz
M1 7.75E-05 0 0 7.76E-05 0
M2 -2.55E-05 7.09E-05 3.56E-04 4.68E-04 9.28E-06

M2 2.18E-04 0 0 2.18E-04 0
M3 -4.61E-04 2.02E-04 1.24E-05 -1.50E-04 6.76E-04

Table 6.9: The estimation of the Order Tensor values for three sets of experimental
N-H RDC using 3DApprox software for protein 1P7E.

Sxx Sxy Sxz Syy Syz
M1 0.0007 0 0 0.001 0
M2 0.0002909 6.21E-05 0.0003189 0.000408 5.44E-05
M3 0.0005063 0.0004637 -0.0002655 0.0002289 -0.0002664

for two alignment media M1 and M2. In this case M1 is considered as reference

frame which coincides with Molecular Frame(MF) therefor it is diagonalized and

M2 is estimated with respect to M1 molecular frame. Likewise M2 is considered as

reference frame and M3 is estimated with respect to M2. Table6.9 listed the estimated

relative Order Tensor values for M1 and M2 and M3 using 3DApprox software. The

Order Tensor values for M2 and M3 are calculated with respect of M1 where M1 is

assumed to be coincided with Molecular Frame(MF).

6.6.2 The improvement of fitness score by adding ex-

tra RDC sets for protein 1P7E

The objective of this experiment is to confirm the relation between nD-PDPA score

and bb-rmsd and to compare the result of 2D-PDPA with nD-PDPA utilizing exper-

imental data. Moreover, the improvement of the nD-PDPA analysis by adding an

extra set of RDC is investigated.
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(a) (b)

(c)

Figure 6.10: The plots of nD-PDPA and 2D-PDPA analysis using 250 decoy struc-
tures for protein 1P7E. All RDC sets are experimental and Order Tensor values are
calculated using REDCAT software.(a) 2D-PDPA analysis using { NH, NH } vectors
from two alignment media;(b)nD-PDPA analysis using { NH, NH } vectors from two
alignment media;(c)nD-PDPA analysis using { NH, NH, NH } vectors from three
alignment media(M1, M2 and M3)

A dataset of 250 decoy structures is generated by altering φ and ψ back bone

torsion angles in the range of 0 to 6Å.The generated datasets are utilized throughout

all experiments described here.

In Figure 6.10(a) shows the relationship between 2D-PDPA score and bb-rmsd

of decoy structures. The same experiment was conducted using nD-PDPA engine in

6.10(b). Generally the fitness score of nD-PDPA for n=2 does indicate any better

score than the 2D-PDPA, this is due to lack of sensitivity in the lower dimension by

not utilizing the 64 by 64 grid in nD-PDPA. However, addition of extra RDC sets

improve the fitness as it is shown in 6.10(c) Figure 6.11 demonstrates the relationship

between nD-PDPA score and bb-rmsd for 250 decoy structures generated from refer-
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(a) (b)

(c)

Figure 6.11: The plots of nD-PDPA analysis utilizing 250 decoy structures for protein
1P7E. All RDC sets are experimental and Order Tensor values are estimated using
2D and 3D approximation software. (a){ NH-NH } RDC vectors from two alignment
media (M1 and M2);(b){ NH-NH } RDC vectors from two alignment media (M2 and
M3);(c){ NH-NH } RDC vectors from three alignment media (M1, M2 and M3);

ence structure 1P7E. The utilized RDC sets are experimental and the Order Tensors

are estimated using 2D and 3D Approx software. It is clear that the funneling effect

that is expected for such analysis does not exist in any of the experiments in Figure

6.11. The experimental error and inaccurate estimation of the Order Tensors could

possibly contribute in this . However, closer investigation reveals more information.

Tables 6.10 and 6.11 show ten best structures ranked by nD-PDPA score for two

N-H vectors in Figure 6.11(a) and three N-H vectors in Figure 6.11(c) experiments.In

Table 6.10, nD-PDPA results indicate seven structures out of ten under 3Å and one

structure is 5.9Å away from reference structure. In Table 6.11 the improvement of the

analysis is clear by adding an additional set of RDC resulting all first ten structures

below 3Å with respect to the subject protein 1P7E.
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Table 6.10: The nD-PDPA scores for the first ten structures of Figure 6.11(b). The
RDC sets that are used in this experiment are M1 and M2. Both RDC sets are N-H
vectors.

α β γ score bbrmsd
1 struct_33 160 165 95 z 0.3606 1.778
2 struct_95 110 145 50 z 0.3752 0.733
3 struct_62 35 160 160 0 0.3778 2.7034
4 struct_138 125 130 70 z 0.3803 1.335
5 struct_124 160 20 135 y 0.3870 0.472
6 struct_54 85 110 70 x 0.3916 5.949
7 struct_10 170 25 115 x 0.3916 3.925
8 struct_100 85 125 20 0 0.3934 2.118
9 struct_84 115 140 40 z 0.3939 2.732
10 struct_87 120 140 20 z 0.3942 3.828

Table 6.11: The nD-PDPA scores for the first ten structures 6.11(c). The RDC sets
are used in this experiment are M1, M2 and M3. All RDC sets are N-H vectors.

α β γ score bbrmsd
1 struct_138 170 25 175 x 0.8817 1.335
2 struct_1 150 155 25 x 0.8880 0.079
3 struct_97 150 155 25 x 0.8997 0.085
4 struct_110 80 5 95 y 0.9014 0.034
5 struct_145 115 165 120 z 0.9031 0.805
6 struct_34 70 15 170 0 0.9041 2.511
7 struct_78 135 165 10 x 0.9056 0.805
8 struct_17 80 5 95 y 0.9073 0.031
9 1P7E 80 5 95 y 0.9091 0
10 struct62 170 170 55 x 0.9109 2.704
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Table 6.12: List of relative Order Tensor values estimated for M1 and M2 with respect
to M1. Also M3 and M4 with respect to M3 for protein 1P7E.

Sxx Sxy Sxz Syy Syz
N-H(M1) 0.00028 0 0 0.00045 0
N-H(M2) 0.00043 -0.00042 0.00023 0.00073 -0.00013
Cα-Hα(M2) -0.00045 0.00046 -0.00027 -0.00084 0.00016
N-C(M2) 0.00053 -0.00052 0.00027 0.00089 -0.00015

6.6.3 Data Preparation for Protein 1D3Z

For protein 1D3Z, available RDC vectors are C-N, N-H, C-H and Cα-Hα from two

alignment media (total of 8 RDC sets). Table6.12 lists relative Order Tensors esti-

mation where N-H RDC set from first alignment medium(M1) is considered to be

Molecular Frame(MF). Only 71% of the RDC data are available and the analysis of

the RDC sets indicate up to ±3.7Hz of noise.

6.6.4 The improvement of fitness score by adding ex-

tra RDC sets for protein 1D3Z

In the following experiments protein 1D3Z is used as reference structure. A dataset

of 250 decoy structures is generated by altering φ and ψ back bone torsion angles in

the range of 0 to 6Å.The generated datasets are utilized throughout all experiments

described here. The availability of variety of RDC sets (see the previous Section) al-

low us to produce combination of RDC sets in the following experiments. Figure 6.12

demonstrates the result of nD-PDPA experiments on protein 1D3Z. Figure 6.12(a)

shows the R2 of 0.4 for two N-H RDC vectors. Combination of N-H, Cα-Hα in Figure

6.12(b) and N-H, C-N in Figure 6.12(c) demonstrates slightly improved R2 compar-

ing with N-H, N-H vectors, specially for the structures below 2Å away from 1D3Z.

However, in Figure 6.12(d) the value of R2 demonstrates the fitness score, comparing

with other three experiments. This result once again confirms the improvement of the
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(a) (b)

(c) (d)

Figure 6.12: The plots of nD-PDPA analysis utilizing 250 decoy structures for protein
1D3Z. All RDC sets are experimental and Order Tensor values are estimated using
2D and 3D approximation software (a) { NH-NH } RDC vectors from two alignment
media;(b){ NH, CαHα } RDC vectors from two alignment media;(c) { NH, CN }
RDC vectors from two alignment media;(d){ NH, NH, CαHα } from two alignment
media.

fitness score of nD-PDPA by adding extra set of RDC as were demonstrated before

for synthetic datasets.
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Chapter 7

Structure refinement using nD − PDPA

7.1 Introduction

The process of correcting the structural discrepancies and improving the over-

all structural qualities of a modeled structure to bring it as close as possible to its

native structure is known as protein structure refinement. Practically, the process

of refinement includes simultaneous improvement in protein backbone geometry, ir-

regular hydrogen bonds, atomic collisions, irregular bond length, erroneous torsion

angles, side-chain displacement. To satisfy the most of these restraints (if not all),

often a considerable amount of experimental data are required. In this section, the

application of the nD-PDPA method in the refinement of modeled protein structure

is discussed. Since our refinement method is based on the nD-PDPA engine, unas-

signed RDC sets are the only requirement and the primary focus of the method is

on back-bone refinement. The application of the method is tested on both synthetic

and experimental datasets. Also, to measure the performance and the accuracy of

the nD-PDPA refinement method, the results are compared to Xplor-NIH software.

7.2 Refinement process utilizing nD − PDPA

engine

The capability of PDPA to rank a decoy set of structures relative to an unknown

protein is discussed previously(For more information see Section 5.4.5).
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Figure 7.1: Operation schematic of refinement illustrated in three main stages.
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The overall operation of the refinement proceeds in three main stages as shown in

Figure 7.1. In the first stage, the relative order tensor parameters are calculated.

The program utilizes a modeled protein (the protein that needs to be refined) and

the number of iterations (variable n) as the input parameters (the blue box in Figure

7.1). In the next stage, decoy structures are generated (See Appendix A) from the

modeled structure . Then, the decoy structures set is ranked by the nD-PDPA. The

structure with the lowest PDPA score is selected and used as the reference structure

for the next iteration. This process is repeated until the iteration count reaches to n

(the yellow box in Figure 7.1). In the last stage, the final structure in each iteration

is reported as the potential refined structures(the green box in Figure 7.1).

7.3 Results and Discussion

7.3.1 Refinement of structure using synthetic data

The protein 1A1Z is used to conduct the first experiment (for more information

about this protein see Section 6.4 and Table 6.1). The objective of the following

experiment is to track of the nD-PDPA score for each iteration to establish the

feasibility of the nD-PDPA refinement method. The utilized RDC sets consist of two

sets of N-H RDC vectors with no error added to the set to accommodate the ideal

condition.

Figure 7.2 shows the refinement process for the protein 1A1Z. The red dots denote

the best ranked structure in each iteration. Then the best structure is used as the

reference to generate decoy set for the next iteration. This process is repeated for six

iterations. In this experiment, a modeled structure (from the decoy structure dataset)

that is 2.847Å away from 1A1Z is selected to serve as starting refinement point. Table

7.1 shows the details information recorded for each round of refinement. The bb-rmsd

is improved from 2.847Å in Run0 to 1.953Å in Run5. The final Run (Run5) indicates
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Figure 7.2: The refinement process of a modeled structure that is 2.847Å away from
1A1Z. The red dots denotes the structure with the best nD-PDPA score at each round.
Totally this refinement ran in six iterations. The final structure is approximately 1.9Å
away from 1A1Z. Two N-H RDC sets with no error is used for this experiment.

Table 7.1: The result of refinement from Figure 7.2 is listed here. The second column
shows the iteration (Run) number. 7th column shows the nD-PDPA score for the
best structure in each iteration.

α β γ score bbrmsd
1 Run0 55 10 140 z 0.3286 2.847
2 Run1 130 5 60 z 0.2845 1.884
3 Run2 60 5 130 z 0.2480 1.658
4 Run3 40 5 150 z 0.2400 2.095
5 Run4 40 5 150 z 0.2299 2.041
6 Run5 40 5 150 z 0.2284 1.953
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Figure 7.3: The refinement process of a modeled structure that is 2.847Å away from
1A1Z. The red dots denotes the best structure at each iteration. Totally this refine-
ment ran in 6 iterations.Final structure is about 1.7Å away from 1A1Z. Three N-H
RDC sets with no error is used for this experiment.

Table 7.2: The detail refinement process result from Figure 7.3. Column one denotes
the iterations number followed by the best candidate structures name in column two.
Columns three to six indicate the orientation of the molecule and the rotation axis in
which the best nD-PDPA score produced. Column seven is nD-PDPA score for each
iteration and the last column is the bb-rmsd with respect to 1A1Z protein.

α β γ score bbrmsd
1 Run0 75 15 125 z 0.4517 2.847
2 Run1 60 15 135 z 0.3751 2.699
3 Run2 75 5 115 z 0.3436 2.251
4 Run3 75 10 115 z 0.3266 1.776
5 Run4 75 10 115 z 0.3217 1.767
6 Run5 75 10 115 z 0.3201 1.741

the improvement of the nD-PDPA score (about 0.1) and about 1Å of the bb-rmsd

respectively. However, the middle iterations exhibit inconsistency in nD-PDPA score

in relation with bb-rmsd. For example in Run2 to Run3 the bb-rmsd decreases

while the nD-PDPA score improves for both runs. A number of reasons explain this
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anomaly. First, it is possible the structures with the same bb-rsmd produce different

nD-PDPA score.This fact was observed previously in the funneling pattern of bb-

rmsd and nD-PDPA(Figure 7.2 and see Section 5.3). Second, generating structures

randomly (see Appendix A to get more information) to form a decoy dataset, do not

guarantee to produce the better quality structure than the previous iteration. The

second reason suggests, if the iterations are repeated sufficiently large, there will be a

higher probability of producing the high-quality structures. The same experiment has

been repeated for the protein 1A1Z using NH(M1)-NH(M2)-NH(M3) RDC vectors

with no error introduced to the data. The first reference structure is 2.847Å away from

1A1Z (the same structure as the previous experiment). Figure 7.3 demonstrates the

plot of each iteration, and Table 7.2 shows the same results in the numerical format.

The final result after five iterations indicates the improvement in both bb-rmsd from

2.847Å to 1.741Å and nD-PDPA score about 0.13 respectively. The addition of an

extra set of RDC reduced the bb-rmsd of the final refined structure to 1.741Å that

demonstrates about 0.2Å of improvement compare to the previous experiment.

7.3.2 Refinement of structure using experimental data

The similar datasets that have been used in Section 6.5.1 are utilized in this exper-

iment (see Table 6.1). Figure 7.4 shows the plot of iteration steps for the protein

1D3Z using NH(M1)-NH(M2)-CH(M2) RDC datasets. The order tensor values are

estimated using 3DApprox software as we described in Section 6.6.3. In this ex-

periment, the refinement iterations were repeated 22 times. Table7.3 demonstrates

the nD-PDPA scores along with bb-rmsd with respect to protein 1D3Z. The refine-

ment process produced structural improvement of about 0.7Å from 2.834Å to 2.18Å.

There is not a significant improvement from Run14 to the end of Run22. A number

of reasons contribute to this inefficiency. First, the utilized experimental RDC sets

are unassigned and contain error and missing data. The RDC error affects the order
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Figure 7.4: The refinement process of a structure that is 2.843Å away from protein
1D3Z. The experiment is repeated 22 times using experimental RDC sets.

tensor estimation in the absence of the subject structure. Second, there is no guar-

antee to produce higher quality structures that exhibit better RDC fitness in a decoy

structure set in the process of decoy structure generation. Third, the selection of only

one candidate for the next iteration from the ranked structures list is not an efficient

way while it is possible that a structure with the lower bb-rmsd stays in the higher

ranking score. Such a problem is addressed in the next section, by the selection of

the n-Best structures from the ranked structures list. In the next experiment protein,

1P7E is selected. In this experiment three N-H RDC vectors from three alignment

media are utilized.

Figure 7.5 demonstrates the refinement steps (red dots) and Table 7.4 shows the

detail of the steps. The first structure is 2.911Å away from 1P7E. In the Run1,

there is a leap of the bb-rmsd to 3.034 but as the iterations go forward, the bb-rmsd

shows improvement. In the Run9 and 10 the results are the same (gray shaded rows)

indicating no improvement in the Run10. The lowest bb-rmsd is 1.989Å (Run11).

In all rows, the nD-PDPA score is improved. This indicates a constant improvement
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Table 7.3: The detail refinement process result from Figure 7.4. Column one denotes
the iterations number followed by the best candidate structures name in column two.
Columns three to six indicate the orientation of the molecule and the rotation axis in
which the best nD-PDPA score produced. Column seven is the nD-PDPA score for
each iteration and the last column is the bb-rmsd with respect to 1D3Z protein.

α β γ score bbrmsd
1 Run1 65 160 55 y 0.6568 2.843
2 Run2 85 155 70 y 0.5689 2.297
3 Run3 85 155 70 y 0.5541 2.22
4 Run4 85 155 70 y 0.5391 2.246
5 Run5 85 155 70 y 0.5311 2.246
6 Run6 85 155 70 y 0.5284 2.148
7 Run7 85 155 70 y 0.5255 2.135
8 Run8 85 155 70 y 0.5237 2.146
9 Run9 85 155 70 y 0.6284 2.537
10 Run10 85 155 70 y 0.5702 2.337
11 Run11 85 155 70 y 0.5326 2.258
12 Run12 85 155 70 y 0.5290 2.25
13 Run13 85 155 70 y 0.5186 2.329
14 Run14 85 155 70 y 0.5052 2.203
15 Run15 85 155 70 y 0.5027 2.221
16 Run16 85 155 70 y 0.4998 2.221
17 Run17 85 155 70 y 0.4879 2.125
18 Run18 85 155 70 y 0.4997 2.204
19 Run19 85 155 70 y 0.4999 2.12
20 Run20 85 155 70 y 0.4988 1.988
21 Run21 85 155 70 y 0.4977 1.991
22 Run22 85 155 70 y 0.4757 2.18

in RDC fitness to the produced structure that necessarily do not improve the bb-

rmsd. Figure 7.6 demonstrates superimpose of four structures from Table 7.4. The

structures include Run0 in blue, Run6 in red, Run8 in purple and Run10 in green.

The reference structure, protein 1P7E also is added to this image in cyan. In each

iteration, by improvement the nD-PDPA score the secondary structures are improved

as it is clear in Run10(green).
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Figure 7.5: The refinement plot of a structure that is 2.911Å away from the protein
1P7E. The experiment is repeated 15 iterations.

Table 7.4: The detail refinement process result from Figure 7.5. Column 1 denotes
the iterations number followed by the run number in column 2. Columns 3 to 4
indicate the orientation angles of the molecule and the rotation axis in which the
best nD-PDPA score produced. Column 5 is the nD-PDPA score for each iteration
and the last column is the bb-rmsd with respect to 1P7E protein.

α β γ score bbrmsd
1 Run0 55 125 35 0 0.8906 2.911
2 Run1 60 145 70 0 0.8551 3.034
3 Run2 30 130 50 x 0.8232 2.993
4 Run3 130 50 130 z 0.8111 2.24
5 Run4 55 130 135 z 0.7734 2.218
6 Run5 125 45 140 z 0.7409 2.044
7 Run6 125 45 140 z 0.7292 2.051
8 Run7 165 45 105 z 0.7187 2.085
9 Run8 165 45 105 z 0.7072 2.274
10 Run9 165 45 105 z 0.6907 1.993
11 Run10 165 45 105 z 0.6907 1.993
12 Run11 165 45 105 z 0.6832 1.989
13 Run12 165 45 105 z 0.6776 2.077
14 Run13 165 45 105 z 0.6691 2.076
15 Run14 165 45 105 z 0.6562 2.03
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Figure 7.6: The superimpose of four structures from Table7.4.The structures include
Run0 in blue, Run6 in red, Run8 in purple and Run10 in green. The reference
structure, protein 1P7E also is added in cyan.

7.3.3 n− best structure refinement

In the refinement process, a structure with the lowest nD-PDPA score is con-

sidered to be the best structure and is used as the reference to generate the decoy

structures for the next iteration. However, often the selection of one structure as the

reference for the next round is not the best choice for a number of reasons. First, it is

possible that structures with the higher nD-PDPA score exhibit, the lower bb-rmsd

with respect to subject structure. Second, erroneous data is the source of inaccurate

estimation of order tensor that affects the nD-PDPA scores and, therefore ranking.

Moreover, it is possible in the nD-PDPA ranking list, the difference of nD-PDPA

score for two high ranked structures is minuscule (for example the difference of 0.01)

and two structures exhibit approximately similar secondary structure quality. In such
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Table 7.5: The result of ranking of an refinement iterations. Run1 shows 3.051Å
while Run2 shows the better bb-rmsd. In this case structures from row2 to row 12
are selected as reference structures for the next refinement iteration.

α β γ score bbrmsd
1 Run1 100 160 125 y 0.3539 3.051
2 Run2 90 165 115 y 0.3572 2.898
3 Run3 95 160 115 y 0.3574 2.631
4 Run4 95 160 115 y 0.3589 2.495
5 Run5 95 160 115 y 0.3633 2.702
6 Run6 95 160 115 y 0.3646 2.704
7 Run7 95 160 115 y 0.3676 2.546
8 Run8 95 160 115 y 0.3687 2.485
9 Run9 95 160 115 y 0.3689 2.678
10 Run10 95 160 115 y 0.3697 2.693
11 Run11 95 160 120 y 0.3697 2.892
12 Run12 95 160 115 y 0.3698 2.675

a case considering the second structure as a potential candidate along with the first

one will improve the likelihood of generating the better quality decoy structure set.

To achieve this goal, n is defined as the rank of the reference structure in a

refinement process. For example in Table 7.5, the reference structure is in rank 13

therefore n = 13(not shown in the table). In this case, the first 12 structures can be

utilized as a reference set for the next iteration since all of them have the better nD-

PDPA score compare to the reference structure in row 13. This approach improves

the process of nD-PDPA refinement by offering more valid structures as references to

generate decoy set in the next iteration. Table 7.6 demonstrates the results of the nD-

PDPA refinement for the protein 1D3Z using the similar data to the experiment shown

in Table 7.3. In this experiment, a set of the best structures is selected as references

for the following iterations. For example, all structures labeled as Run1 are the

best score structures up to the reference in Run1 and are the subject of generating

decoy structure for the Run2 (next iteration). The gray shaded rows denote the

best score for each set that are superimposed in Figure 7.7. The result exhibits
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Table 7.6: The result of nD-PDPA refinement using n-Best structures selection
method. Each group is separated by a blank line, indicate a refinement iteration.
The gray shaded structures indicate the best structure among n best structure in
each iteration. The structure refinement shows improvement of 1.5Å.

α β γ score bbrmsd
1 Run0 65 160 55 y 0.6568 2.843

2 Run1 85 165 70 y 0.6216 2.508
3 Run1 85 165 75 y 0.6263 2.799
4 Run1 70 155 60 y 0.6412 2.321
5 Run1 85 160 70 y 0.6513 2.36
6 Run1 55 160 35 y 0.6354 2.795
7 Run1 85 165 75 y 0.6565 2.651
8 Run2 75 155 70 y 0.6146 2.057
9 Run2 85 165 70 y 0.6167 2.534
10 Run3 85 150 80 y 0.6006 1.499
11 Run3 80 155 70 y 0.6049 2.261
12 Run3 85 165 70 y 0.6100 2.516
13 Run3 80 155 75 y 0.6120 2.127
14 Run3 75 155 70 y 0.6126 2.468
15 Run4 80 150 75 y 0.5710 1.499
16 Run4 85 150 80 y 0.5914 1.87
17 Run4 85 155 80 y 0.5931 1.561
18 Run4 75 155 70 y 0.5946 2.343
19 Run4 85 150 80 y 0.5972 1.505
20 Run4 85 150 80 y 0.5990 1.505
21 Run5 80 150 80 y 0.5379 1.371
22 Run5 75 155 75 y 0.5597 1.658
23 Run5 75 150 75 y 0.5600 1.906
24 Run5 85 150 85 y 0.5679 1.57
25 Run5 85 150 85 y 0.5709 1.95
26 Run6 80 150 80 y 0.5344 1.372
27 Run7 80 150 80 y 0.5282 1.358
28 Run7 80 150 80 y 0.5288 1.358
29 Run7 80 150 80 y 0.5290 1.386
30 Run7 80 150 80 y 0.5327 1.371
31 Run7 80 150 80 y 0.5340 1.372
32 Run7 80 150 80 y 0.5341 1.365
33 Run8 80 150 80 y 0.5282 1.358
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Figure 7.7: Three out of nine shaded structures from Table 7.6 and 1D3Z are super-
imposed. 1D3Z is in cyan, the reference (row 1) is in red, the row 2 is in green and
the row 8 is in blue.

1.488 improvement in the nD-PDPD score ( about 1.5Å in bb-rmsd). This also

demonstrates the improvement of about 1.317 in bb-rmsd compared to the previous

experiment (Table 7.5).

7.3.4 Comparison of the nD−PDPA refinement to Xplor-

NIH

Several computational techniques have been developed to address the refinement

issue [55], [98], [22]. Most of these methods relies on the extensive utilization of the

experimental data such as NOEs [22].

The PDPA method utilizes unassigned RDC datasets to conduct the refinement. At
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Table 7.7: The result of the comparison of the nD-PDPA with the xPlor-NIH. The
Starting Structure column denotes the bb-rmsd of the structure with respect to pro-
tein 1A1Z. And Refined Structure column shows the bb-rmsd of the refined structures
with respect to 1A1Z.

Method Starting
StructureÅ

Refined
Structure Å

nD-PDPA 2.847 2.195
xPlor-NIH 2.847 1.940

Table 7.8: The result of comparison of nD-PDPA with xPlor-NIH. The Starting
Structure column denotes the bb-rmsd of the structure in Å with respect to protein
1D3Z. And Refined Structure column shows the bb-rmsd of the refined structures
with respect to 1D3Z.

Method Starting
StructureÅ

Refined
Structure Å

nD-PDPA 2.843 2.180
xPlor-NIH 2.843 2.177

the time of writing this manuscript, we are not aware of any software using only

unassigned RDC as the primary source of the data for the refinement a structure.

Xplor-NIH is a software package for Molecular Dynamic Simulation [22]. Xplor-NIH

is capable of using RDC sets to fold a protein. However, the RDC must be assigned.

In Table 7.7 the result of comparison of the nD-PDPA method to the xPlor-NIH

is demonstrated. The target protein is 1A1Z, and three synthetic N-H RDC sets

is used with ±1Hz of error uniformly added to the sets and 25% of the data are

removed randomly. The Xplor-NIH exhibits slightly better result (about 0.3Å). The

nD-PDPA ran only for 6 runs (Table 7.2). As it is shown previously, more iterations

potentially generate the higher quality structure. In the second experiment (Table

7.8) protein 1D3Z is utilized with experimental RDC sets as listed in Section 6.6.3.

The result of nD-PDPA refinement after running for 20 iterations is 2.180Å and xPlor-

NIH refinement result is 2.177Å respectively. The results of both experiments suggest
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the nD-PDPA refinement process is as capable as of xPlor-NIH. Moreover, nD-PDPA

utilizes unassigned RDC that makes the method suitable to initiate the refinement

process as early as data acquisition time. From this standpoint, the nD-PDPA’s

refinement functionality and practicality are unique.
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Chapter 8

Time Complexity and Software Engineering of

nD − PDPA

8.1 Introduction

Today’s scientific researches are heavily dependent on software programs. Uti-

lization of software programs in any research laboratory is undeniable for a number

of reasons. Reasonable cost for high-speed computers that can process millions of

data in the short time that once was difficult if it was not impossible. Moreover, the

development of novel algorithm in the response to needs for precise calculations for

the scientific purpose also contributes to the vast usability of the modern software

programs [94]. The process of development of scientific software can be different from

standard software. It requires more attention in the certain aspect of the software

development such as calculation precision. Moreover, any computational error has an

impact on scientific discovery or publication [59]. In this section, the development of

the nD-PDPA software from software engineering point of view is discussed. Then,

the running time of the nD-PDPA software and 2D-PDPA is investigated.

8.2 The Development of nD − PDPA

The nD-PDPA is developed based on the 2D-PDPA software engine. However, two

significant changes needed to be developed in nD-PDPA that were not in the 2D-

PDPA (See chapter7 for more details). The first transformation of the PDPA is
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Figure 8.1: A fragment of the configuration file for nD-PDPA. The alignment media
count and the information about the RDC type and order tensor values are shown.

about the capability of utilizing more than two different types of RDC sets. The

second change is about using RDC values as the points of calculation of likelihood

instead of using 64 by 64 grid in 2D-PDPA.

Figures 8.1 and 8.2 demonstrate a fragment of the nD-DPDA’s configuration file. The

configurations include the number and type of RDC sets , the relative order tensor

values, start and end values for rotational angles and other variables. These variables

are designed to offer more flexibility and ability to run the software program by ma-

nipulating the values of the variables for the research purpose. The software generates

two primary results as output. The first output is the result of the nD-PDPA score,

along with the best rotational angles. The score usually is redirected to a result file

and if a library of the structure is examined all results are redirected to a single output

file. The second output file is the calculated RDC and distribution probability (PDP)

for the best orientation of the subject protein. The nD-PDPA software is written in
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Figure 8.2: A fragment of the configuration file for nD-PDPA is demonstrated. Set-
ting information for Kernel calculation such as sigma and start and end rotational
angles are shown.

C++ programming language, utilizing Object Oriented software design technology.

It is compiled, optimized and tested for Linux Operating System (OS). The software

is free for downloading from our laboratory’s server http://ifestos.cse.sc.edu .

8.3 Software Testing Strategies

While different methods are used for testing commercial software, many scientific

software programs lack utilizing efficient testing methods for the quality assurance

and reliability. For the evaluation of the software, systematic test cases were required.

To evaluate the nD-PDPA software the strategies below is utilized: 1. To prove the

concept, synthetic data is used for a known structure. In this case, non-uniform RDC

sets such as { N − H } and { Cα-Hα } are calculated. This experiment can prove

the validity of the method by ranking the best structures among a pool of decoy
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or database of homologous structures. Since both query and subject structures are

known, other measurement methods such as bb-rmsd can be used for correctness

and accuracy of the results. 2. For further expansion of the method, experimental

data is obtained from online resources such as BMRB [82], [34] for the structures

that are characterized before. The experimental data add more ambiguity in terms

of experimental error to the nD-PDPA analysis. This test cases, confirms the error

tolerance of the proposed method. 3. Using experimental data is one of the main

objective of this research to proof the capability of the nD-PDPA method for char-

acterizing of an unknown protein. To facilitates such an experiment, our laboratory

established collaboration with MUSC. The purpose of this partnership is to conduct

experiments to characterize the structure of a novel protein PF2048.1. In addition,

this experiment potentially can be extended for structure refinement to obtain the

better quality structure to the native one.

8.4 nD − PDPA Algorithm Analysis and Run-

ning Time

In the nD-PDPA analysis, there are two major bottlenecks affect on the running time

of the program:

8.4.1 The calculation of Euler angles for cPDP

It is mentioned previously that for a given structure, a cPDP (calculated PDP) is

created for each possible rotation of the structure in a grid search over the Euler angles

(α, β, γ) at the resolution of 5 ◦ (for more information please see Section 5.2). Since

the rotation of the subject protein in an alignment medium is unknown, therefore this

grid search is unavoidable. The grid search performs 46,656 (36 x 36 x 36 rotation)

as a result of 5 ◦ intervals. While the improvement of the grid search is still under
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investigation, it is possible to manipulate some of the variables related to the grid

search and Euler angles. Figure 8.2 listed some of the parameters that can be used

to adjust the running time. "increment" parameter denotes the Euler angles interval

(default is 5 ◦ ). Assigning a larger number (for example 10 ◦), finishes the process

quicker with the cost of the lower resolution in the search of the best PDP. Also the

range of Euler angles can be adjusted in the configuration file if the range of the

angles is known prior to the process. This is useful for the refinement process, when

after some iteration the structures merge toward one point and generally produce

similar Euler angles (See Figure 7.4).

8.4.2 Calculation of PDPs

The calculation of the PDP and subsequently the scoring procedure is the major

contribution to the running time of the PDPA method. Algorithm 1 describes the

process of calculating PDP when two set of RDC are used (in 2D-PDPA). Algorithm

accepts two sets of RDC M1 and M2 as input. Two RDC sets are in the same size.

In lines 7 and 9 two loops run from 1 to 64. These loops construct a 64 by 64 grid.

The third loop in line 12 calculates the distance of the current grid cell (x and y

are calculated in lines 8 and 10 respectively) from any RDC located in the index k.

The summation of the likelihood for each point x and y are reported and saved into a

matrix (lines 18 to 20). The running time of the algorithm depends on three for loops

in lines 7, 9 and 12. It is clear that the running time of the algorithm is a function of

O(S642). Since the user can manipulate the dimension length (64 for example) as an

input variable, therefore, the previous function in general form is O(SC2), where S

denotes the size of the RDC set and C denotes the desired dimension (for example, a

C by C grid). Note that, the addition of dimensions to the procedure (n > 2) increases

the complexity of the algorithm exponentially and is given by O(SCn). Therefore,

the Algorithm 1 is unfavorable in higher dimensions of the PDPA experiment. In
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Algorithm 1 Calc-2DPDP
(
RDCSet M1, RDCSet M2

)
1: Let (x, y, z)← 0
2: Let index← 0
3: Let (delta1, delta2)← 0
4: Let S ← sizeof(M1) . Note: Both M1 and M2 are in the same size.
5: Let M be a matrix of (64 x 64) rows by 3 columns
6:
7: for i ← 1 to 64 do
8: x ← i * delta1 + start1
9: for j ← 1 to 64 do

10: y ← j * detla2 + start2
11: z ← 0
12: for k ← 1 to S do
13: t1 ← abs( x - M1[k])
14: t2 ← abs( y - M2[k])
15: do temp ← 2DGaussian(t1, t2)
16: z ← z + temp
17: end for
18: M(index, 0) ← x
19: M(index, 1) ← y
20: M(index, 2) ← z
21: index ← index + 1
22: end for
23: end for
24:
25: return M

Algorithm 2, the input is a matrix of RDCs and the columns of this matrix denote

the number of RDC sets and the rows denote the RDC sets size. Algorithm consists

of two main loops in lines 5 and 7. The summation of the likelihood for each row

(containing n RDC set) is calculated in line 9 and 10. The time complexity of the

algorithm is O(S2) where S denotes the size of the sets.
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Algorithm 2 Calc-nDPDP
(
RDCSets RDC, Size S

)
1: Let index← 0
2: Let (delta1, delta2)← 0
3: Let M be a vector of size S
4:
5: for i ← 1 to S do
6: row1 ← RDC[i]
7: for j ← 1 to S do
8: row2 ← RDC[j]
9: do temp ← nDGaussian(row1, row2)

10: z ← z + temp
11: end for
12: M[i] ← z
13: z ← 0
14: end for
15:
16: return M

8.5 The running time of nD − PDPA vs. 2D-

PDPA

To benchmark the performance of the nD-PDPA for two or more sets of RDC, pro-

tein 1A1Z was selected, and the results were compared to 2D-PDPA results. Four

synthetic N-H RDC sets were generated in an ideal condition. Both programs were

executed on a Linux desktop with Intel Core i7, 2.67 GHz processor and 8 MB of

memory. Table 6 shows the results of execution time for 2D-PDPA and nD-PDPA.

In the Section 8.4.2, it is shown that the asymptotic execution time of 2D-PDPA is a

function of O(Cn) while the execution time complexity of nD-PDPA is a function of

O(nC2). The 2D-PDPA is incapable of incorporating more than two RDC sets hence

the 2D-PDPA running times for the dimensions n > 2 were approximated using the

2D-PDPA asymptotic function. For two RDC sets the running time was measured

by executing the 2D-PDPA software. The running time for one RDC set was col-

lected from 1D-PDPA version of the software and was assumed both 2D-PDPA and
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Table 8.1: The execution time for nD − PDPA and 2D-PDPA

# of
available
RDC sets

nD − PDPA
required

time(seconds)

2D-PDPA required
time(seconds) Å

1 20 20
2 323 363
3 484 6859
4 906 130321

nD-PDPA consume the same execution time. The results indicate tremendous time

reduction in nD- PDPA engine especially for n>=3(Table 8.1). It is worthy to note

that the listed running times are only for one structure. Usually a PDPA experiment

utilizes a library of structures that is indeed impossible to be finished in a reasonable

time in the case of 2D-PDPA method.
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Chapter 9

Conclusion and Future work

9.1 Conclusion

In this study, PDPA is introduced as a novel software tool that can be utilized

in protein structure identification and classification. The 2D-PDPA uses two sets of

homogeneous RDC sets. The application of the 2D-PDPA to identify an unknown

structure in a database is demonstrated successfully. Moreover, the 2D-PDPA is uti-

lized to identify the closest structure to the native structure from a set of 15 modeled

structures.

The limitations of the 2D-PDPA are addressed by development of nD-PDPA method.

The transition from 2D-PDPA to nD-PDPA can be deemed advantageous for a num-

ber of reasons. First, based on availability, additional RDC datasets can be combined

from multiple alignment media to increase the information content without impos-

ing a substantial penalty in the execution time. Second, nD-PDPA’s scope of RDC

analysis no longer limited to just N-H RDC data. The new improvements enable

flexible inclusion of RDC data from the same or different alignment media. For ex-

ample N-H, Ca-Ha data from one alignment medium may be combined with N-H of

the second and C-N of the third alignment medium for a total of four-dimensional

analysis of PDPA. This flexible inclusion of any available datasets from any number

of alignment media can increase the information content significantly leading to a

more improved sensitivity and selectivity performance of nD-PDPA. Elimination of

the exponential time-complexity and translation of the algorithm into a polynomial
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time-complexity is a major achievement with clear consequences in the execution time

of the algorithm. Moreover, the application of the nD-PDPA for structure refinement

is introduced. The immediate advantage of nD-PDPA refinement method laid on the

utilization of unassigned RDC set. In that sense, the nD-PDPA refinement method

can be used as early as data acquisition time with the requirement of minimum two

RDC sets.

9.2 Future works

This section explains some potential avenues of future research.

9.2.1 Improvement of nD − PDPA refinement method

The refinement method can be improved in a number of ways. First, the generation

of decoy structure using potential energy of protein. Incorporation of this method

prevents producing of structures with the atomic collision. Moreover, the PDPA

score can be combined with other protein energy terms for RDC based refinement.

Second, the refinement of a portion of a protein such as loops is suggested. The decoy

structure generator software can be improved to perturb only a portion of a structure

while the rest of the structure remains intact (rigid body).

9.2.2 Incorporation of any paired vector base data

The nD-PDPA utilizes RDC sets from different alignment media and vector type. The

insensitivity of RDC data in translation in space and utilization of the unassigned

data reduce the robustness of the nD-PDPA analysis regardless of the amount of

data. To increase the robustness of the nD-PDPA incorporation of other distance

based data such as JCouplings and Residual Chemical Shifts are suggested.
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Appendix A

Generating of Decoy Structures

A.1 Introduction

Producing decoy structures sets are of the central importance of the PDPA pro-

cess. Generation of the decoy structures is used in various experiments in the PDPA

method such as the refinement experiment. In this section, the algorithm for gener-

ating a set of decoy structure is explained.

A.2 Utilization of software MolMol for de-

coy structures generation

MolMol is a protein structure visualization software that was developed in 1990’s

[47]. Although unfortunately MolMol no longer receives any technical support or

update from original authors, still is one of the popular protein visualization software

in the community. MolMol consists of a rich API set that performs a variety of the

operation through command-line on protein coordinate file (PDB).

Several wrapper programs in Perl were developed to utilize MolMol’s APIs ca-

pabilities. Figure A.1 demonstrates the overall algorithm for generation of decoy

structures.The algorithm uses the size of the decoy library and the maximum desired

bb-rmsd in Å as input variables. In the first step, the algorithm generates a random

number between 0 to 360◦ to be added to each back-bone φ and ψ angles to generate

a new perturbed structure. After producing a new structure, the bb-rmsd of the new
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Figure A.1: The flowchart of the decoy structures generator program.
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Figure A.2: The distribution of the bb-rmsd for 1000 decoy structures from protein
1A1Z.

Figure A.3: The distribution of the bb-rmsd for 5000 decoy structures from protein
1A1Z.

structure with respect to the reference structure, is calculated. If the back-bone is

lesser than the given maximum bb-rmsd by the user ( value of r in Figure A.1) then

the algorithm accepts the structure otherwise not. The process is repeated until the

number of generated structures reaches to the desired number of proteins given by

the user (value of n in Figure A.1).

Figures A.2 and A.3 demonstrate the frequency distribution of the bb-rmsd of two

decoy structure sets for 1000 and 5000 structures for protein 1A1Z. Usually before any

experiment such an observation is conducted to ensure that the generated structures

are distributed uniformly over desired bb-rmsd range.
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